
Android’s security
architecture

Nikolay Elenkov

Android Security Symposium, Sep 2015

Vienna

Agenda

• Android’s architecture and security model

• Package management

• Permissions

• SELinux

• User management

• Cryptography, PKI, and credential storage

• Enterprise security and Android for Work

• Device security and verified boot

• NFC and secure elements

Android’s architecture

Android + TEE

From “Android for Work Security white paper”
https://static.googleusercontent.com/media/www.google.co.jp/en/US/work/android/files/android-for-work-security-white-paper.pdf

Security model

• Kernel-based application sandbox

• DAC (UID, GID-based access control) and MAC (SELinux type enforcement)

• Dedicated, per-application UIDs

• Secure IPC (local sockets, Binder, intents)

• System services running with reduced privileges

• Code signing

• Application packages (APKs)

• OS update packages (OTA packages)

• Android permissions

• System and custom (application defined)

• Required to access:

• System resources/hardware

• Personal information (contacts, email address, location, etc.)

• Exported application components

Binder IPC

Package installation
com.example.app.apk/

|-- AndroidManifest.xml

|-- classes.dex

|-- resources.arsc

|-- lib/

| |

| `-- armeabi-v7a/

| `-- libapp.so

|-- META-INF/

| |-- CERT.RSA

| |-- CERT.SF

| `-- MANIFEST.MF

`-- res/

|-- drawable/

|-- layout/

`-- xml/

• Code and resources (common)

/data/app/com.example.app/

|-- lib/arm/libapp.so

|-- oat/arm/base.odex

`-- base.apk

• Data (per user)
/data/user/0/com.example.app/

|-- files/

|-- databases/

|-- shared_prefs/

/data/user/1/com.example.app/

…

Package data directories

ls –lZ /data/user/0/

drwxr-x--x u0_a185 u0_a185 u:object_r:app_data_file:s0:c512,c768 at.mroland.android.apps.nfctaginfo

drwxr-x--x bluetooth bluetooth u:object_r:bluetooth_data_file:s0 com.android.bluetooth

drwxr-x--x system system u:object_r:system_app_data_file:s0 com.android.keychain

drwxr-x--x u0_a4 u0_a4 u:object_r:app_data_file:s0:c512,c768 com.android.providers.calendar

drwxr-x--x system system u:object_r:system_app_data_file:s0 com.android.providers.settings

drwxr-x--x radio radio u:object_r:radio_data_file:s0 com.android.providers.telephony

drwxr-x--x u0_a5 u0_a5 u:object_r:app_data_file:s0:c512,c768 com.android.providers.userdictionary

drwxr-x--x u0_a27 u0_a27 u:object_r:app_data_file:s0:c512,c768 com.android.proxyhandler

drwxr-x--x u0_a115 u0_a115 u:object_r:app_data_file:s0:c512,c768 com.bria.voip

drwxr-x--x u0_a190 u0_a190 u:object_r:app_data_file:s0:c512,c768 com.codebutler.farebot

drwxr-x--x u0_a142 u0_a142 u:object_r:app_data_file:s0:c512,c768 com.csipsimple

Package management components

Advanced package management

• Updating system apps

• /system/app/ /data/app/

• Encrypted packages

• Forward locking

• Installing in encrypted container

• Mainly for paid apps (DRM)

• Package verification

• Verification agents

• Default agent in Google Play

• Sends APK details to Google

Code signing
• For application packages (APKs)

• Self-signed X.509 certificates, treated as binary blobs

• Not using PKI (no certificate chain building)

• Individual signature for each file included in APK

• Signing certificate == package identity

• Package updates require same certificate

• Certificate required to grant signature permissions or shared user ID

• For update packages (OTAs)

• Modified ZIP format

• Signature in ZIP comment, over whole file (excluding comment)

• Verified by OS and recovery

• System images may also be signed (required as of 6.0)

APK code signing example

• APK signature file (META-INF/CERT.SF)

Signature-Version: 1.0

Created-By: 1.0 (Android SignApk)

SHA1-Digest-Manifest:
Hh+AqEL1RMpxY+SpzJRpv4pcyG4=

Name: classes.dex

SHA1-Digest-Manifest:
ikCuogTuKUl4NoGNlTW9QOmxeEk=

Name: res/anim/slide_left_in.xml

SHA1-Digest-Manifest:
VBc3lMcURseVYOwtwkARy4u5n9I=

• APK signature block (META-INF/CERT.RSA)

$ jarsigner -keystore platform.keystore -
verify -verbose -certs Calendar.apk

smk 1168568 classes.dex

X.509, EMAILADDRESS=android@android.com,
(testkey)

[certificate is valid from 2/29/08 to
7/17/35]

smk 428 res/anim/slide_left_in.xml

X.509, EMAILADDRESS=android@android.com,
(testkey)

[certificate is valid from 2/29/08 to
7/17/35]

s = signature was verified

m = entry is listed in manifest

k = at least one certificate was found in
keystore

Permissions (1)

• Permission: ability to perform particular operation

• Could be regarded as a form of MAC

• Enforced at different levels

• Kernel (e.g., INTERNET permission)

• Native service level

• Usually mapped to groups (READ_EXTERNAL_STORAGE sdcard_r)

• Framework level (PackageManager and ActivityManager)

• Dynamic: checkUidPermissions(), mainly services

• Static: intents, content providers

• Assignment

• Traditionally at install time

• Also at runtime since Android 6.0

Permissions (2)

• Protection levels

• normal

• dangerous

• signature

• signatureOrSystem (signature|privileged)

• System permissions

• android package, defined in framework-res.apk

• Custom permissions

• Defined by applications

• Shared user ID

• Apps with same signature can run as same UID

• Each app receives union of permissions declared by shared user ID

• Permission groups: related permissions

• CONTACTS, STORAGE, LOCATION

Install-time permissions

• All permissions granted at install time

• dangerous permissions require user confirmation

• No runtime checks required

• Once granted, permissions cannot be revoked

• Except for developer permissions

• Fine grained

• Granted for all users on device

• Stored in /data/system/packages.xml

Runtime permissions
• Need to prompt for dangerous permissions at runtime

• Can be revoked at any time

• Granted/revoked by permission group

• No prompt for other permission from same group

• Coarse grained

• Managed per app, per user

• /data/system/users/0/runtime-permissions.xml

• Some permissions cannot be revoked

• FLAG_PERMISSION_POLICY_FIXED

• FLAG_PERMISSION_SYSTEM_FIXED

• Managed by device owner (via DevicePolicyManager)

• setPermissionGrantPolicy()

• setPermissionGrantState()

SELinux

SELinux policy example
type keystore, domain;

type keystore_exec, exec_type, file_type;

keystore daemon

init_daemon_domain(keystore)

typeattribute keystore mlstrustedsubject;

binder_use(keystore)

binder_service(keystore)

allow keystore keystore_data_file:dir create_dir_perms;

allow keystore keystore_data_file:notdevfile_class_set create_file_perms;

allow keystore keystore_exec:file { getattr };

allow keystore tee_device:chr_file rw_file_perms;

allow keystore tee:unix_stream_socket connectto;

SELinux in Android (SEAndroid)

• Binder support (LSM hooks in kernel added)

• New init commands (seclabel, restorecon, …)

• Labelling for system properties

• Based on rules in property_contexts

• Labelling application processes

• All forked from zygote, cannot use domain transition

• Security context derived based on rules in seapp_contexts file

• Middleware MAC (MMAC)

• seinfo label set based on signing certificate

• Rules defined in mac_permissions.xml

An alternative view…

From https://grsecurity.net/~spender/pics/lost_selinux_coloring_book_page1.gif

Multi-user support

• Originally for tablets only, now for phones also (as of 5.0)

• Users are isolated by UID/GID

• Separate settings and app data directories

• system directory: /data/system/users/<user ID>/

• app data directory: /data/user/<user ID>/<pkg name>/

• Apps have different UID and install state for each user

• app UID: uid = userId * 100000 + (appId % 100000)

• shared applications: install state in per-user package-restrictions.xml

• External storage isolation

Types of users

• Primary user (owner)

• Full control over device

• Secondary users

• Restricted profile

• Shares apps with primary user

• Only on tablets

• Managed profile

• Separate apps and data, but shares UI with primary user

• Managed by Device Policy Client (DPC)

• Guest user

• Temporary, restricted access to device

• Data (session) can be deleted

Cryptography and SSL

• JCA provider architecture, multiple providers:

• Crypto: From Apache Harmony

• SHA1PRNG only, for backwards compatibility

• BC: (modified) Bouncy Castle

• AndroidOpenSSL: Open/BoringSSL based. Project name: conscrypt

• Main provider

• native code+JNI wrappers

• GmsCore_OpenSSL: in Play Services, automatically updated

• AndroidKeyStore: Generates unextractable keys managed by system keystore

• RSA, EC, HMAC and AES (as of 6.0)

• SSLv3, TLS v1.0-v1.2 support: JSSE API, providers:

• HarmonyJSSE (deprecated)

• AndroidOpenSSL

Certificates and PKI

• Android-specific trust store

• Pre-installed trust anchors (‘trusted credentials’)

• User-installed trust anchors

• Per user/profile

• Modified certificate chain building

• Based on Bouncy Castle code

• Dynamically updated certificate blacklists

• Dynamically updated certificate pinning for
Google sites

Network security

• WPA EAP2 Enterprise (802.11i)

• EAP: EAP-TLS, EAP-TTLS, PEAP, EAP-SIM, EAP-AKA since Android 5.0

• Integrates with system keystore

• Integrates with Android for Work (device administration APIs)

• VPN

• Legacy VPN: PTPP and IPSec

• Always-on VPN: no network access until VPN is up

• Per-user/profile VPNs

• Dynamic routing/firewall rules

• Per-application VPN since Android 5.0

Credential storage

• System-managed, secure cryptographic key store

• Unexportable keys

• Remains secure even if main OS is compromised (if HW-backed)

• Implemented in the keystore system service

• HAL interface (keymaster), hardware-backed implementations possible

• Typically uses TEE (implemented using TrustZone) on ARM devices

• Provides framework APIs

• KeyChainAPI

• KeyStore

• KeyPairGenerator, KeyGenerator

Online account management

• System store for accounts, passwords, and authentication
tokens

• AccountManagerAPI

• Pluggable architecture

• Designed for passwords, not very flexible

• Token requests confirmed by user

• One of the first runtime permissions

• Google accounts are special

• Master token saved on first authentication

• User can control access in their account page on Web

• Supports 2FA (OTP only for now)

Device administration

• Device security policy can be set by ‘device administrator’

• Password/PIN policy

• Device lock/unlock

• Storage encryption

• Camera access

• Much more control if version > 5.0

• Needs to be activated by user

• Cannot be directly uninstalled

• Needs to be disabled first

• May be required to sync account data

• MS Exchange (EAS)

• Google Apps

Android for Work

• Android > 5.0 supports a ‘Work Profile’

• Follows pre-defined managed provisioning flow

• Managed by ‘Profile Owner’ device admin

• Requires device encryption

• Separate apps and data

• Can only install pre-approved apps

• But shares UI with primary user

• Launcher/Notifications/Settings

• ‘Device Owner’ is a super-device admin

• Installed when device is first initialized

• Cannot be installed

• Extra privileges

• Scoped to device

Disk encryption

• Block device encryption, based on dm-crypt

• userdata partition only

• AES 128 CBC and ESSIV:SHA256

• HW-accelerated encryption also supported

• dm-req-crypt, AES XTS

• Master key (DEK) encrypted with AES 128

• KEK derived from PIN/password

• scrypt algorithm

• Protected by TEE key in Android > 5.0

• Optionally encrypt on first boot

• forceencrypt flag, Android > 5.0

• File-based encryption (EXT4) coming soon?

Device security

• Lockscreen (keyguard)

• Pattern (least secure)

• PIN/Password

• Stores hashes, uses Gatekeeper HAL since 6.0

• Smart Lock since 5.0

• Trust agents

• Extensible

• Bluetooth, NFC, Location, Face (Google proprietary)

• Factory reset protection since 5.1

• Google account info saved on frp partition

• Fingerprint since 6.0

• Fingerprint HAL

• Can be used for payment authorization, etc.

Verified boot

• Device software integrity based on HW root of trust

• Boot chain (simplified)

• Verify bootloader using HW root of trust

• Bootloader verifies boot/recovery partition

• Kernel verifies system partition

• Device (bootloader) state

• LOCKED/UNLOCKED

• Allows custom (non-OEM) keys

• Boot state

• GREEN/YELLOW/ORANGE/RED

• Doesn’t stop boot, only shows warning

From “Verifying Boot”,
https://source.android.com/devices/tech/security/verifiedboot/verified-boot.html

dm-verity

• dm-verity: transparent integrity checking for
block devices

• Read error if block integrity check fails

• Useful for read-only partitions like system

• Requires block-based OTA updates

• Kernel needs to be trusted (verified boot)

• Stateful in Android 6.0

• Default is enforcing mode

• Falls back to logging mode if metadata cannot
be verified

• State saved in dedicated metadata partition

• Does not stop boot, only shows warning

NFC and secure elements

• Near Field Communication (NFC)

• Reader/write mode (RW)

• Peer-to-peer mode (P2P)

• Card emulation mode (CE)

• Secure Element (SE), since 2.3

• Host-based CE (HCE), since 4.4

• Secure Elements

• UICC (SIM)

• ASSD (microSD)

• Embedded SE (eSE)

• APIs

• Telephony APIs (restricted)

• OpenMobile API (SEEK)

• Android HCE (HostApduService)

References (Web)

• Official (Android documentation)

• https://source.android.com/devices/tech/security/enhancements/

• https://developer.android.com/preview/api-overview.html#afw

• https://developer.android.com/about/versions/android-5.0.html#Enterprise

• https://source.android.com/devices/tech/security/index.html

• Community

• http://www.droidsec.org/wiki/ (Droidsec Wiki)

• https://plus.google.com/communities/118124907618051049043 (Android Security G+ Community)

• https://forum.xda-developers.com/general/security (XDA Security Forum)

• Mobile security companies

• https://www.nowsecure.com/blog/ (NowSecure, formerly viaForensics)

• https://bluebox.com/blog/business/ (Bluebox)

• https://labs.mwrinfosecurity.com/publications/ (MWR InfoSecurity)

https://source.android.com/devices/tech/security/enhancements/
https://developer.android.com/preview/api-overview.html#afw
https://developer.android.com/about/versions/android-5.0.html#Enterprise
https://source.android.com/devices/tech/security/index.html
http://www.droidsec.org/wiki/
https://plus.google.com/communities/118124907618051049043
https://forum.xda-developers.com/general/security
https://www.nowsecure.com/blog/
https://bluebox.com/blog/business/
https://labs.mwrinfosecurity.com/publications/

References (Books)

• The Mobile Application Hacker's Handbook, Wiley, 2015

• Android Internals, Jonathan Levin, 2015

• Android Hacker's Handbook, Wiley, 2014

• Android Malware and Analysis,Auerbach,2014

• Android Security Internals, No Starch, 2014

• Embedded Android, O'Reilly, 2013

