
Assessing Android Applications
Using Command-Line Fu

Pau Oliva Fora
@pof

https://www.twitter.com/pof

$ whoami
• Pau Oliva Fora, aka @pof

• Mobile Security Engineer with NowSecure

• Linux guy, R+D background

• Smartphone research since 2004

• Android research since 2008

• Co-Author of Android Hacker's
Handbook

AGENDA
• Working with APK files:

• Checking the app certificate

• Getting permissions,
manifest, resources, etc...

• Disassembling the application

• Decompiling the application

• Obfuscation check

• MasterKey exploit check

• Checking for the
SecureRandom bug

• Other useful tips

• Interacting with installed APPs:

• Obtaining application data

• Checking for debuggable
processes

• Checking for debuggable
apps

Working with APK files

App Certificate
• Multiple tools to check certificates:

• OpenSSL 

• keytool 

• jarsigner

openssl pkcs7 -inform DER -in META-INF/*.RSA
-noout -print_certs -text

keytool -printcert -file META-INF/*.RSA

jarsigner -verify -certs -verbose *.apk

App Certificate

App Certificate

• Android M performs stricter validation of APKs:

• An APK is considered corrupt if a file is declared in
the MANIFEST.MF but not present in the APK itself

• An APK must be re-signed if any of the contents are
removed

App Certificate

• Android M performs stricter validation of APKs:

• An APK is considered corrupt if a file is declared in
the MANIFEST.MF but not present in the APK itself

• An APK must be re-signed if any of the contents are
removed

• A common trick is to abuse the META-INF folder to
stuff information into the APK without breaking the
signature validation

openssl

openssl

Can be RSA or DSA

openssl

Can be RSA or DSA

certificate validity

openssl

Can be RSA or DSA

certificate validity

key length

keytool

jarsigner

jarsigner

Android Asset Packaging Tool: aapt

• From Android SDK build-tools

• Command-line tool to work with APKs

Android Asset Packaging Tool: aapt

Android Asset Packaging Tool: aapt

Android Asset Packaging Tool: aapt

apktool
• A tool for reverse engineering Android APK files

• Decode resources to original form

• Get smali source

• Rebuild APK back to binary after modifications

http://ibotpeaches.github.io/Apktool/

http://ibotpeaches.github.io/Apktool/

apktool

apktool

apktool

apktool

apktool

Decompiling
• A bunch of decompilers available, each producing different

results on some situations

• What usually "works best" for me:

• JEB (commercial) - https://www.pnfsoftware.com/

• jadx (DEX → JAVA) - https://github.com/skylot/jadx

• enjarify + jad (DEX → JAR → JAVA)

• https://github.com/google/enjarify

• http://varaneckas.com/jad/

https://www.pnfsoftware.com/
https://github.com/skylot/jadx
https://github.com/google/enjarify
http://varaneckas.com/jad/

Decompiling
• A bunch of decompilers available, each producing different

results on some situations

• What usually "works best" for me:

• JEB (commercial) - https://www.pnfsoftware.com/

• jadx (DEX → JAVA) - https://github.com/skylot/jadx

• enjarify + jad (DEX → JAR → JAVA)

• https://github.com/google/enjarify

• http://varaneckas.com/jad/

replaces the old dex2jar

https://www.pnfsoftware.com/
https://github.com/skylot/jadx
https://github.com/google/enjarify
http://varaneckas.com/jad/

jadx

jadx

jadx

decompiled source

jadx

decompiled source

decoded resources

jadx

decompiled source

decoded resources

jadx-gui

enjarify

• cd el

jad

jad

Obfuscation checks
• ProGuard:

• file shrinker: detects and removes unused classes, fields, methods,
and attributes

• optimizer: optimizes bytecode and removes unused instructions

• obfuscator: renames classes, fields, and methods using short
meaningless names

• DexGuard:

• code & resource protection, tries to break a number of RE tools

• string encryption, class encryption, and dex splitting

Obfuscation checks
• Some things are very easy to spot:

• Removed unused classes like R.java, TargetApi.java ...

• Renamed class, fields and method names

• with ProGuard they are renamed to 'a', 'b', 'c'...

• with DexGuard they use single characters like `ºª... or
UTF16 characters

• dexinfo is a useful tool to spot those changes:

https://github.com/poliva/dexinfo

https://github.com/poliva/dexinfo

dexinfo

dexinfo

dexinfo verbose output

dexinfo verbose output

dexinfo verbose output

dexinfo verbose output

MasterKey exploit check

• Discovered by Jeff Forristal, made public on Jul 2013

• Affects all Android devices from Android 1.6 up to 4.3

• Allows duplicating entries inside an APK:

• The hashes in META-INF folder are from the original
signed files, which are checked for signature

• The files that end up being installed on the device
are the duplicated entries

MasterKey exploit check

MasterKey exploit check

original files

MasterKey exploit check

original files

injected files

SecureRandom bug check

• Affects Android versions from Android 4.1 up to 4.3

• Applications using JCA (Java Cryptography
Architecture) for key generation, signing, or random
number generation may not receive cryptographically
strong values due to improper initialization of the
underlying OpenSSL PRNG.

• Allowed theft of funds to all bitcoin wallets generated
using an Android APP (August 2013)

SecureRandom bug check
• Steps to check if an app is vulnerable:

1. Check if the app invokes SecureRandom() 

2. Make sure the app invokes any other java.security
or javax.crypto APIs 

3. Check if it does invoke SetSeed() *and* has
references to /dev/random or /dev/urandom 

SecureRandom bug check
• Steps to check if an app is vulnerable:

1. Check if the app invokes SecureRandom() 

2. Make sure the app invokes any other java.security
or javax.crypto APIs 

3. Check if it does invoke SetSeed() *and* has
references to /dev/random or /dev/urandom 

strings classes.dex |grep "java.security.SecureRandom"

SecureRandom bug check
• Steps to check if an app is vulnerable:

1. Check if the app invokes SecureRandom() 

2. Make sure the app invokes any other java.security
or javax.crypto APIs 

3. Check if it does invoke SetSeed() *and* has
references to /dev/random or /dev/urandom 

strings classes.dex |grep "java.security.SecureRandom"

strings classes.dex |egrep "java.security|javax.crypto" \
 |egrep -v "SecureRandom|SetSeed"

SecureRandom bug check
• Steps to check if an app is vulnerable:

1. Check if the app invokes SecureRandom() 

2. Make sure the app invokes any other java.security
or javax.crypto APIs 

3. Check if it does invoke SetSeed() *and* has
references to /dev/random or /dev/urandom 

strings classes.dex |grep "java.security.SecureRandom"

strings classes.dex |egrep "java.security|javax.crypto" \
 |egrep -v "SecureRandom|SetSeed"

strings classes.dex |grep "SetSeed" 
strings classes.dex |egrep "/dev/u?random"

SecureRandom bug check

SecureRandom bug check

Other useful tips
• I maintain a bunch of useful scripts for doing Android

related stuff in this github repository:

• Recompute DEX file checksum

• Extract DEX from inside Android Runtime OAT files

• Change MAC address on some devices...

https://github.com/poliva/random-scripts/tree/master/android

https://github.com/poliva/random-scripts/tree/master/android

Interacting with installed APPs

Back to the basics

Back to the basics
• We're going to use some bash one-liners. Don't be

scared! It's easy if you break them down into simple
commands.

Back to the basics
• We're going to use some bash one-liners. Don't be

scared! It's easy if you break them down into simple
commands.

• Output of ADB shell is '\n\r' terminated, sometimes
that '\r' needs to be stripped.

Back to the basics
• We're going to use some bash one-liners. Don't be

scared! It's easy if you break them down into simple
commands.

• Output of ADB shell is '\n\r' terminated, sometimes
that '\r' needs to be stripped. adb shell ls | tr '\r$' ' '

Back to the basics
• We're going to use some bash one-liners. Don't be

scared! It's easy if you break them down into simple
commands.

• Output of ADB shell is '\n\r' terminated, sometimes
that '\r' needs to be stripped.

• Be familiar with the bash for loops.

adb shell ls | tr '\r$' ' '

Back to the basics
• We're going to use some bash one-liners. Don't be

scared! It's easy if you break them down into simple
commands.

• Output of ADB shell is '\n\r' terminated, sometimes
that '\r' needs to be stripped.

• Be familiar with the bash for loops.

for f in <list>
do

<commands>
done

adb shell ls | tr '\r$' ' '

Back to the basics
• We're going to use some bash one-liners. Don't be

scared! It's easy if you break them down into simple
commands.

• Output of ADB shell is '\n\r' terminated, sometimes
that '\r' needs to be stripped.

• Be familiar with the bash for loops.

for f in <list>
do

<commands>
done

for f in <list> ; do <commands> ; done

adb shell ls | tr '\r$' ' '

Back to the basics
• We're going to use some bash one-liners. Don't be

scared! It's easy if you break them down into simple
commands.

• Output of ADB shell is '\n\r' terminated, sometimes
that '\r' needs to be stripped.

• Be familiar with the bash for loops.

for f in <list>
do

<commands>
done

for f in <list> ; do <commands> ; done

for f in `ls` ; do echo "$f" ; done

adb shell ls | tr '\r$' ' '

Obtaining app data

Obtaining app data

strip android
backup header

Obtaining app data

gzip magic

strip android
backup header

Obtaining app data

gzip magic deflate compression method

strip android
backup header

Obtaining app data

Debuggable processes

Debuggable processes

Debuggable processes

Debuggable apps

Thank you!

Questions?

Thank you!

Questions?

