
Lessons from the trenches:
An inside look at Android
security

Nick Kralevich <nnk@google.com>
2015-09-09

whoami

●Nick Kralevich
●nnk@google.com
●Android Security since

2009
●Platform security lead

whoami

Just one of many people ...

whoami

millions
lines of code in
Android Open Source

thousands
of unique devices

hundreds
of OEMs and
security solutions

What does it mean to be secure?

How to make a computer secure

Lesson #1:
Security is about
compromise

Android Security Philosophy

Non-goal

Highly visible, minimally effective, evokes fear.

The goal

Effective security is invisible and
evokes calm.

Bridging the gap

Install
Confirmation

Google
Play

Unknown
Sources
Warning

Verify Apps
Consent

Verify Apps
Warning

Runtime
Security Checks

Sandbox &
Permissions

●Prevention
●Detection
●Minimization
●Reaction

Four pillars of Android Security

First pillar of Android Security:
Prevention

●Code audits
●Design reviews
●Outreach and education
●Safe by default design philosophy
●“Red team”

Traditional approaches to prevention

Lesson #2:
Always start with a
sandbox

A platform for applications

Android Security Evolution

 System

 Contacts Email Google Play

 Game X

 Game Y

 Root

Android verifies application
signature and assigns an
application sandbox at install
time.

Application Sandboxes
(including system) isolate data
by running each app as it’s own
UID.

Inter-process communication
(IPC) requires mutual request.

IPC and services may be
protected by permissions.

Android Security Evolution – 4.1

 Root

 System

 Contacts Email Google Play

 User 1

 Contacts Email Google Play

 Game X

 Game Y

 Game X

 Game Y

 Trust
 Zone

Application sandbox extended
to groups of applications --
preventing IPC across the
user boundary

Developer key store protected
from root compromise

Lesson #3:
Evolve the sandbox as
threats emerge

Android Security Evolution – 5.0

UID=0 UID=0 UID=0 UID=0 UID=0 UID=0

 System

 System

 System

 System

 System

 System

 Contacts Email Google Play

 User 1

 Contacts Email Google Play

 Game X

 Game Y

 Game X

 Game Y

 Trust
 Zone

Segmentation of system
and root UID with
constrained SELinux
policies

All powerful root no longer
exists. Only constrained
UID=0

Central security policy
allows audit of system &
root applications

Q: It might be good for everyone to know: Which Android
devices do you find the most secure?

CunningLogic (aka jcase)

A: Android 5.x and up is particularly annoying for me to try and
root, my go to tactics are often dead due to the strengthened
SELinux policies.

https://www.reddit.com/r/Android/comments/3hhciw/ask_us_almost_anything_about_android_security/

Android Security Evolution – 5.0

https://www.reddit.com/r/Android/comments/3hhciw/ask_us_almost_anything_about_android_security/
https://www.reddit.com/r/Android/comments/3hhciw/ask_us_almost_anything_about_android_security/

Android Security Evolution

UID=0 UID=0 UID=0 UID=0 UID=0 UID=0

 System

 System

 System

 System

 System

 System

 Contacts Email Google Play

 User 1

 Contacts Email Google Play

 Game X

 Game Y

 Game X

 Game Y

 Kernel

 Hardware

 Trust
 Zone

Experimental features in 5.0
provide integrity checking for
the full stack.

Supply chain threats are also
a focus of research efforts.

Lesson #4:
Establish strong security
standards

● No unlabeled files
● No ptrace
● No device node creation
● No raw I/O
● No mmap zero
● No mac_override
● No setting security properties
● No access to /data/security and

/data/misc/keystore
● No /dev/mem or /dev/kmem access
● No /proc usermode helpers
● No ptrace of init
● No access to generically labeled

/dev/block files
● Restrictions on mounting filesystems

Security Standards – SELinux assertions

● No execute of files from outside of
/system

● No access to /data/properties
● No writing to /system or rootfs
● No registering of unknown services
● No entering init domain
● No /sys/kernel/debug read access
● No apps acquiring capabilities
● No raw app access to camera,

microphone, NFC, radio, etc.
● No app-generic socket access
● No app/proc access to different security

domains
● No access to GPS files
● Cannot disable SELinux

Currently ~250 rules

Second pillar of Android security:
Minimization

●Impossible to fix every bug
●Impossible to find every bug
●Robustness in failure
●Maintain the integrity of the system

Why minimization?

Lesson #5:
Account for human error

Is this statement true?

x + 1 > x

A quiz

Is this statement true?

x + 1 > x

Not if you’re a programmer...

A quiz

●ASLR
●No eXecute Memory
●FORTIFY_SOURCE
●Read-only Relocations
●Stack Canaries
●Non-PIE binaries banned

Compiler Hardening

●Research
○ Integer overflow protections
○ CFI (Control Flow Integrity)
○ Safe Stack
○ -fstack-protector-strong

Compiler Hardening – research

Lesson #6:
Encourage safe
languages

●Android standardized on memory safe
languages

●Native code specifically discouraged:
Notably, using native code on Android generally does not
result in a noticeable performance improvement, but it always
increases your app complexity. In general, you should only
use the NDK if it is essential to your app—never because
you simply prefer to program in C/C++.

https://developer.android.com/tools/sdk/ndk/index.html

Language Choice

https://developer.android.com/tools/sdk/ndk/index.html
https://developer.android.com/tools/sdk/ndk/index.html

●Our industry needs to discourage memory
unsafe languages
○ Too risky and error prone

●Early research on C replacements for
Android
○ Suggestions welcome!

Language Choice – research

"Every program and every user
of the system should operate
using the least set of privileges
necessary to complete the job."
J. H. Saltzer and M. D. Schroeder, “The protection of information in computer systems”,
pp. 1278-1308, Proceedings of the IEEE 63, number 9, September 1975

Principle of least privilege

●Designed with containment in mind
○ UID sandbox
○ SELinux sandbox

●Exploit mitigations effective
○ ASLR
○ SELinux no-exec rules

Case Study – libstagefright

Third pillar of Android Security:
Detection

Lesson #6:
Keep your ears to the
ground

●security@android.com
●Android bug database
●Academic research / journals
●Automated monitoring of forums
●Failed exploit detection
●Android Security Rewards Program

Multiple methods of discovering bugs

Android Security Rewards Program

Severity Bug Test case CTS / patch CTS+Patch

Critical $2,000 $3,000 $4,000 $8,000

High $1,000 $1,500 $2,000 $4,000

Moderate $500 $750 $1,000 $2,000

Low $0 $333 $500 $1,000

●$10K - local to kernel
●$20k - remote to kernel
●$20k - local to trustzone
●$30k - remote to trustzone

Up to $38,000 per issue
https://g.co/AndroidSecurityRewards

Android Security Rewards Program

Fourth pillar of Android Security:
Reaction

Lesson #7:
Have an update strategy

●Monthly Security Updates
●Monthly Security Bulletins
●3 years from device availability

Updates

●3rd party apps are important too
●1.6 million apps in Google Play
●Identified security vulnerabilities

○ OpenSSL
○ Private Keys in Apps
○ Apache Cordova Update
○ Exposed Credentials

●All of them are getting fixed

Not just about OS updates...

There is no such thing as perfect
security.

Lesson #8:
Strive for accurate risk
assessments

Vulnerability
News

Headline Unique APKs

Peak
exploitation
after public
release (per

install)

Exploitation
before public

release
(absolute)

Master Key
99% of
devices

vulnerable
1231 < 8 in a million 0

FakeID
82% of

Android users
at risk

258 <1 in a million 0

Masterkey data collected from 11/15/2012 to 8/15/2013 and previously published at VirusBulletin 2013. Fake ID data collected data collected from 11/15/2012
to 12/11/2014 and previously published at

Source: Google Safety Net Data

On risk

On risk

As an industry, we should provide
better data about actual risk and
focus more attention on calming
users while protecting them.

https://static.googleusercontent.com/media/source.android.
com/en//devices/tech/security/reports/Google_Android_Security_2014_Report_F
inal.pdf

https://static.googleusercontent.com/media/source.android.com/en//devices/tech/security/reports/Google_Android_Security_2014_Report_Final.pdf
https://static.googleusercontent.com/media/source.android.com/en//devices/tech/security/reports/Google_Android_Security_2014_Report_Final.pdf
https://static.googleusercontent.com/media/source.android.com/en//devices/tech/security/reports/Google_Android_Security_2014_Report_Final.pdf
https://static.googleusercontent.com/media/source.android.com/en//devices/tech/security/reports/Google_Android_Security_2014_Report_Final.pdf

Closing

●Android grew up in the Internet age, and
learned from 40 years of digital security
experience.

●Robust, sophisticated, multi-layer security
model.

●Open platform ensures Android will
continue to evolve to meet new threats.

In closing

Questions?

Nick Kralevich
nnk@google.com

security@android.com

