
A story of Research:

@m0nk_dot

@natronkeltner

@afrocheese

An Infestation of Dragons
Exploring Vulnerabilities in the ARM

TrustZone Architecture

Who Are We
✤ Josh Thomas

✤ @m0nk_dot / josh@atredis.com

✤ Partner @ Atredis Partners

✤ Charles Holmes

✤ @afrocheese / charles@atredis.com

✤ Principal Research Consultant

✤ Atredis Partners, www.atredis.com

✤ Focused and targeted security firm

✤ Specializing in advanced hardware and software assessments

mailto:josh@atredis.com
mailto:charles@atredis.com

TrustZone In Theory

✤ Heavily promoted as the "be all, end all" solution for mobile security

✤ Marketing promises easy BYOD, secure pin entry, and protection
against APT [1]

✤ In theory, an isolated processing core with isolated memory. Cannot
be influenced by the outside and runs with privileged access.

✤ Allows you to have secure processing in the “Secure World” that the
“Normal World” can’t influence or even be aware of.

✤ Who wouldn’t want a technology where sensitive processing can be
offloaded to protect information from malware?

[1] http://www.arm.com/products/processors/technologies/trustzone/index.php

http://www.arm.com/products/processors/technologies/trustzone/index.php

TrustZone Architecture

From: http://www.arm.com/images/TrustZone_Software_Architecture.jpg

http://www.arm.com/images/TrustZone_Software_Architecture.jpg

What I wish TZ was

✤ A secure chip that allowed you to write software to offload
functionality that you’d really hate for malware to see, without it
impacting other people using the same magic box

✤ Banking app logins,

✤ voice crypto,

✤ 2 factor auth key material,

✤ passwords,

✤ et cetera

What TZ really is

No but really, what’s it used for?

✤ DRM (Widevine, HDCP)

✤ Qfuses

✤ Secure, immutable key storage

✤ Hardware configuration (Secure boot settings, JTAG configuration, device identifiers)

✤ OEM-specific functionality

✤ Boot loader unlock (see Dan Rosenberg’s talk from Black Hat 2014)

✤ SIM unlock

✤ Kernel integrity monitoring / measurement (Samsung Knox)

✤ Not the things you want to hide from malware, but the things Someone Important wants to
hide from the user (e.g. carrier locks, MPAA, etc).

What is a
SnapDragon?

✤ System on a Chip

✤ Executes QSEE (Qualcomm’s Secure Execution Environment)

✤ ARM buses that may be cool to look at one day: AMBA: AXI, APB, etc

✤ How is device authentication performed?

✤ Android

✤ Samsung Galaxy S3, Moto X, Sony Xperia Z, HTC One (M7) and
HTC One XL, Nexus 5, LG G2, …

✤ BlackBerry

✤ Q30, Z10, …

✤ Windows Phone

✤ Lumia 830, …

Who runs QSEE?

Interfaces

✤ SMC [Secure Monitor Call] interface (has had the most public
research)

✤ Interrupts

✤ Shared Memory

✤ Peripherals

TZ Architecture Problems

✤ You can think of TZ as a kernel to your kernel

✤ Concepts learned in, for example, IOCTL related interfaces are not
present.

✤ No ASLR, DEP

✤ TrustZone image stored unencrypted

✤ Physical memory pointers everywhere

✤ Multiple models for protecting internal TZ memory, service
availability

TZ Protections

✤ Each function individually validates input on invocation

✤ Some OEMs use Qualcomm’s validation

✤ Some write custom validation

✤ Some use a combination of custom and Qualcomm’s validation

✤ Qualcomm does not universally block access to any of their functions
even when no longer needed

✤ HTC implements an access bit mask that is used to disable
functions

Service availability

✤ Behind TZ SMC calls are individual “services” that implement
functionality to be exposed to the normal world

✤ These are registered within TZ, so they can be programmatically
identified

tzbsp_set_boot_addr tzbsp_resource_config tzbsp_write_mss_qdsp6_nmi
tzbsp_milestone_set tzbsp_is_service_available tzbsp_memprot_map2

tzbsp_cpu_config tzbsp_get_diag tzbsp_memprot_unmap2
tzbsp_cpu_config_query tzbsp_fver_get_version tzbsp_memprot_tlbinval

tzbsp_wdt_disable tzbsp_ssd_decrypt_img_ns tzbsp_xpu_config_violation_err_fatal
tzbsp_wdt_trigger ks_ns_encrypt_keystore_ns tzbsp_xpu_disable_mmss_qrib

config_hw_for_offline_ram_dump tzbsp_ssd_protect_keystore_ns tzbsp_dcvs_create_group
tzbsp_video_set_state tzbsp_ssd_parse_md_ns tzbsp_dcvs_register_core

tzbsp_pil_init_image_ns tzbsp_ssd_decrypt_img_frag_ns tzbsp_dcvs_set_alg_params
tzbsp_pil_mem_area tzbsp_ssd_decrypt_elf_seg_frag_ns tzbsp_dcvs_init

tzbsp_pil_auth_reset_ns tz_blow_sw_fuse tzbsp_graphics_dcvs_init
tzbsp_pil_unlock_area tz_is_sw_fuse_blown tzbsp_nfdbg_config

tzbsp_pil_is_subsystem_supported tzbsp_qfprom_write_row tzbsp_nfdbg_ctx_size
tzbsp_pil_is_subsystem_mandated tzbsp_qfprom_write_multiple_rows tzbsp_nfdbg_is_int_ok

tzbsp_write_lpass_qdsp6_nmi tzbsp_qfprom_read_row tzbsp_ocmem_lock_region
tzbsp_set_cpu_ctx_buf tzbsp_qfprom_rollback_write_row tzbsp_ocmem_unlock_region

tzbsp_set_l1_dump_buf tzbsp_prng_getdata_syscall tzbsp_ocmem_enable_mem_dump
tzbsp_query_l1_dump_buf_size tzbsp_mpu_protect_memory tzbsp_ocmem_disable_mem_dump

tzbsp_set_l2_dump_buf tzbsp_sec_cfg_restore tzbsp_es_save_partition_hash
tzbsp_query_l2_dump_buf_size tzbsp_smmu_get_pt_size tzbsp_es_is_activated

tzbsp_set_ocmem_dump_buf tzbsp_smmu_set_pt_mem tzbsp_exec_smc_ext
tzbsp_query_ocmem_dump_buf_size tzbsp_video_set_va_ranges tzbsp_exec_smc
tzbsp_security_allows_mem_dump tzbsp_vmidmt_set_memtype tzbsp_tzos_smc

tzbsp_smmu_fault_regs_dump tzbsp_memprot_lock2

MSM 8974 v MSM 8960 v Both

OEM Services

Moto X

motorola_tzbsp_ns_service

Xperia Z

tzbsp_oem_do_something

tzbsp_oem_s1_cmd

HTC One M7 / XL

tzbsp_oem_do_something tzbsp_oem_enc tzbsp_oem_get_rand tzbsp_oem_log_operator

tzbsp_oem_hash tzbsp_oem_set_simlock_retry tzbsp_oem_get_security_level tzbsp_oem_verify_bootloader

tzbsp_oem_aes tzbsp_oem_set_simlock tzbsp_oem_update_simlock tzbsp_oem_simlock_magic

tzbsp_oem_read_mem tzbsp_oem_set_ddr_mpu tzbsp_oem_update_smem tzbsp_oem_emmc_write_prot

tzbsp_oem_write_mem tzbsp_oem_set_gpio_owner tzbsp_oem_read_simlock tzbsp_oem_access_item

tzbsp_oem_disable_svc tzbsp_oem_read_simlock_mask tzbsp_oem_memcpy tzbsp_oem_3rd_party_syscall

tzbsp_oem_query_key tzbsp_oem_simlock_unlock tzbsp_oem_memprot tzbsp_oem_key_ladder

TZ Internal Segmentation

✤ Oh, and to top it all off:

✤ One giant box. A mistake by any individual player impacts everyone!

✤ Players: QC, Discretix, every OEM, Netflix?, etc.

In summary…

✤ Models for service availability and memory accesses are…fragile.

✤ Seems like, in almost every case, a single memory write vulnerability
will RUIN your day.

✤ …And your architecture is designed in such a way as to produce
memory write vulnerabilities like mushrooms

Getting TrustZone Image

$ ls -al /dev/block/platform/msm_sdcc.1/by-name/
drwxr-xr-x 2 system root 540 Apr 3 10:05 .
drwxr-xr-x 4 root root 600 Apr 3 10:05 ..
lrwxrwxrwx 1 root root 21 Apr 3 10:05 aboot -> /dev/block/mmcblk0p12
lrwxrwxrwx 1 root root 21 Apr 3 10:05 abootb -> /dev/block/mmcblk0p15
lrwxrwxrwx 1 root root 20 Apr 3 10:05 boot -> /dev/block/mmcblk0p6
lrwxrwxrwx 1 root root 21 Apr 3 10:05 rpm -> /dev/block/mmcblk0p11
lrwxrwxrwx 1 root root 21 Apr 3 10:05 rpmb -> /dev/block/mmcblk0p16
lrwxrwxrwx 1 root root 20 Apr 3 10:05 sbl1 -> /dev/block/mmcblk0p2
lrwxrwxrwx 1 root root 20 Apr 3 10:05 sbl2 -> /dev/block/mmcblk0p3
lrwxrwxrwx 1 root root 21 Apr 3 10:05 sbl2b -> /dev/block/mmcblk0p13
lrwxrwxrwx 1 root root 20 Apr 3 10:05 sbl3 -> /dev/block/mmcblk0p4
lrwxrwxrwx 1 root root 21 Apr 3 10:05 sbl3b -> /dev/block/mmcblk0p14
lrwxrwxrwx 1 root root 21 Apr 3 10:05 system -> /dev/block/mmcblk0p21
lrwxrwxrwx 1 root root 20 Apr 3 10:05 tz -> /dev/block/mmcblk0p5
lrwxrwxrwx 1 root root 21 Apr 3 10:05 tzb -> /dev/block/mmcblk0p17
lrwxrwxrwx 1 root root 21 Apr 3 10:05 userdata -> /dev/block/mmcblk0p23

SCM Calls

✤ Invoked by utilizing the SMC ARM instruction from supervisor mode
/ kernel space with physical address of an SCM command in r0

✤ See arch/arm/mach-msm/scm.c from the Android kernel for more
detail

command header

command buffer

response header

response buffer

struct scm_command {
 u32 len;
 u32 buf_offset;
 u32 resp_hdr_offset;
 u32 id;
 u32 buf[0];
};

struct scm_response {
 u32 len;
 u32 buf_offset;
 u32 is_complete;
};

TrustZone Services

✤ TrustZone image
contains a table of all
supported SCM calls

✤ Useful to verify image
loaded at correct
address

struct scm_service {
 u32 id;
 char * name;
 u32 return_type;
 int (*impl)();
 u32 num_args;
 u32 arg_size[0];
}

Enter HTC

✤ Lots of excellent primitives (write_mem, read_mem, memcpy, …)

✤ HTC utilizes an access bitmask representing each of their tzbsp_oem
functions

✤ Services can be disabled when no longer needed

Write Vulnerability

✤ This service didn’t validate its input!

✤ In every case we care about, g_fs_status is zero

✤ Gives us a write zero vulnerability

Address Validation

Address “Validation”

✤ What if len is really big? 0xffffffff?

✤ What about >= 0x2A03F000?

✤ What about 0x70000?

tzbsp_oem_memcpy

✤ Wouldn’t this be a much nicer function?

✤ If only we could remove all that “validation”

Oh. Duh.

✤ 00 00 = MOV r0, r0

✤ 00 00 00 00 = ANDEQ r0, r0, r0

Using our “NOP Vulnerability”

Exploit Code

~ fin ~

Another Case Study…

http://bits-please.blogspot.com/2015/08/full-trustzone-exploit-for-msm8974.html

Qualcomm Validation

✤ Each segment
contains memory
range and
permissions

struct memory_region_t {
 u32 id;
 u32 protections;
 u32 start;
 u32 end;
}

✤ How can we
bypass?

Qualcomm Validation

Qualcomm Validation

✤ mem_region_t <8, SECURE, 0x28420000, 0x2A03F000>

✤ mem_region_t <8, SECURE, 0x00000000, 0x00000000>

✤ mem_region_t <-1, SECURE, 0x28420000, 0x2A03F000>

✤ mem_region_t <8, INSECURE, 0x28420000, 0x2A03F000>

✤ mem_region_t <8, SECURE, 0x28420000, 0x10000000>

Domain Access Control Register

✤ Each domain maps to a banked set of memory

✤ D<n> on Qualcomm is 0x55555555 (b010101…01)

✤ b00: Any access to memory generates a fault

✤ b01: Permissions checked against TLB

✤ b10: Reserved / any access to memory generates a fault

✤ b11: “God mode” / no faults ever generated

Trusty

Sneaky Google…

✤ Android has fragmentation!

✤ But what is fragmentation?

✤ OEM shared libraries /applications / configuration / updates

✤ Carrier shared libraries / applications / configuration/ updates

✤ TrustZone

✤ What TrustZone image runs on the Nexus 6 and the Nexus 9?

Motivation

✤ Let’s speculate a bit on this… [1]

✤ “An open source and royalty free software (i.e. FOSS) stack for
TrustZone® to accelerate the adoption of hardware-based security for
SoC, device, system, and service providers”

✤ “Existing TrustZone® software stacks facing variety of challenges
supporting all requirements of our partners, including Defense &
Intelligence Communities ” <— ?????

✤ tl;dr — it would be cheaper if TrustZone were someone else’s problem

[1] http://www.w3.org/2012/webcrypto/webcrypto-next-workshop/papers/webcrypto2014_submission_25.pdf

http://www.w3.org/2012/webcrypto/webcrypto-next-workshop/papers/webcrypto2014_submission_25.pdf

Design

New Features

SMP

Page Table Management

SMC Handling

User Applications

Syscalls

ARM Monitor Mode

Cortex A9 / A15

Existing Features

Little Kernel

MIT license

https://github.com/travisg/lk

Small, preemptive kernel

IPC

Threading

Synchronization

https://github.com/travisg/lk

Architecture

