
© 2017 The MITRE Corporation. All rights reserved.Approved for Public Release; Distribution Unlimited. Case Numbers 17-0968 and 16-4772.

Assessing and Improving Mobile
Application Security
Carlton Northern
Michael Peck

March 2017

| 2 |

© 2017 The MITRE Corporation. All rights reserved. Approved for Public Release; Distribution Unlimited. Case Numbers 17-0968 and 16-4772.

About Us

§ The MITRE Corporation
– Not-for-profit organization
– Operates federally funded research and development centers (FFRDCs)

§Carlton Northern
– Chief Engineer at MITRE focusing on mobile security solutions

§Michael Peck
– Security Engineer at MITRE primarily focusing on mobile security

| 3 |

© 2017 The MITRE Corporation. All rights reserved. Approved for Public Release; Distribution Unlimited. Case Numbers 17-0968 and 16-4772.

Outline

§Analyzing the Effectiveness of Mobile Application Vetting Tools
– Mobile Application Security Architecture
– Analysis Criteria
– Vulnerable and Malicious Mobile Apps for Testing
– Analysis Results
– Outcomes

§ Improving Android Application Security
– Contributions to the Android Open Source Project
§ Android app developer tools
§ Android platform security architecture

| 4 |

© 2017 The MITRE Corporation. All rights reserved. Approved for Public Release; Distribution Unlimited. Case Numbers 17-0968 and 16-4772.

Overview: Analyzing Mobile App Vetting Tools

§Goal: Analyze feasibility for enterprises to apply automated tools to
determine whether apps are safe to use on mobile devices
– Ability for tools to identify security vulnerabilities
– Ability for tools to identify potentially malicious or privacy violating behaviors
– Integration of tools with Enterprise Mobility Management systems
– Capability for reputation analysis of apps and app developers

§Methodology:
– Understand current Android and iOS app security architecture and initiatives
– Formulate analysis criteria
– Develop test apps that demonstrate vulnerable and malicious behavior that map to the

criteria
– Assess a number of commercial and free mobile app vetting solutions by scanning the test

apps

| 5 |

© 2017 The MITRE Corporation. All rights reserved. Approved for Public Release; Distribution Unlimited. Case Numbers 17-0968 and 16-4772.

Mobile Application Security Architecture

§ Apps are sandboxed from each other and underlying system
§ Apps must request and obtain permission to access sensitive resources

Mobile Operating
System

Numerous mitigations are inherently provided by the security architecture of mobile devices

Hardware-Backed Security Components
(Crypto, integrity measurement, etc.)

| 6 |

© 2017 The MITRE Corporation. All rights reserved. Approved for Public Release; Distribution Unlimited. Case Numbers 17-0968 and 16-4772.

Mobile Application Security Architecture Enhancements

§Continuing to evolve in response to common app vulnerabilities
– Will discuss later

§ Evolving in response to emerging threats, malicious behaviors
– Changes to Android Device Admin API in response to ransomware (Android 6)
– Remove ability for Android apps to see MAC addresses, other processes (Android 6 / 7)
– Runtime permission requests (Android 6)
– Apple iOS restrictions on installing non-App Store apps (iOS 9)

§Additional information
– Google I/O 2016: What’s new in Android security (M and N) video
§ https://www.youtube.com/watch?v=XZzLjllizYs

– Apple WWDC 2016: What’s New in Security video
§ https://developer.apple.com/videos/play/wwdc2016/706/

Security architecture enhancements can be leveraged during app security testing

| 7 |

© 2017 The MITRE Corporation. All rights reserved. Approved for Public Release; Distribution Unlimited. Case Numbers 17-0968 and 16-4772.

Analysis Criteria

§ National Information Assurance Partnership’s (NIAP) Protection Profile (PP) for Application
Software
– Security criteria requirements for software applications (mobile, desktop, server) common criteria evaluation.
– Security requirements focusing on encryption, access to platform resources (information repositories and

hardware), use of PII, configuration and anti-exploitation
– https://www.niap-ccevs.org/profile/Info.cfm?id=394

§ Our criteria is based on the NIAP PP for Application Software
– 16 out of the PP’s 25 mandatory security functional requirements
– 6 requirements may not be automatable and 3 not necessary on Android and iOS

§ Ability to identify security vulnerabilities, e.g.:
– Cryptographic issues (e.g. randomness, key storage)
– Insecure data storage
– Insecure network communication
– Memory mappings
– Third-party library issues
– Inter-process communication issues

| 8 |

© 2017 The MITRE Corporation. All rights reserved. Approved for Public Release; Distribution Unlimited. Case Numbers 17-0968 and 16-4772.

Analysis Criteria (cont’d)

§ Ability to identify potentially inappropriate behaviors, e.g.:
– Access to hardware resources and sensitive repositories
– Dynamic code execution
– Report all network communication
– App includes well-known device exploit code
– iOS URL scheme hijacking
– Requests Android Device Administration access

§ Security of the app vetting system itself
– Ability to resist analysis environment detection by malicious apps
– Doesn’t reveal information about other apps under analysis in multi-tenant environment

§ Reporting capabilities
– Supported output formats
– APIs
– Integration with EMM/MDM systems

| 9 |

© 2017 The MITRE Corporation. All rights reserved. Approved for Public Release; Distribution Unlimited. Case Numbers 17-0968 and 16-4772.

Android Vulnerable and Malicious Test Apps

§UploadDataApp
– Grabs lots of sensitive data and sends to remote server
– Uses both HTTP and HTTPS with cert validation disabled
– Etc.

§CustomClassLoader
– Modified sample app from Google
– Downloads and executes .DEX and .SO files
– Downloads and stores files insecurely

§DeviceAdminReceiver
– Google sample app that activates Device Admin

§App with older version of OpenSSL embedded

Available soon at https://mitre.github.io/vulnerable-mobile-apps/

| 10 |

© 2017 The MITRE Corporation. All rights reserved. Approved for Public Release; Distribution Unlimited. Case Numbers 17-0968 and 16-4772.

iOS Vulnerable and Malicious Test App

§AcmeAirlines
– Insecure network communications
– Insecure storage
– Collects data and send to remote server
– Dynamic code execution with JSPatch*
– URI scheme hijacking
– Time-bomb exploit
– Etc.

*https://www.fireeye.com/blog/threat-research/2016/04/rollout_or_not_the.html

| 11 |

© 2017 The MITRE Corporation. All rights reserved. Approved for Public Release; Distribution Unlimited. Case Numbers 17-0968 and 16-4772.

Vendors / Products Included in Evaluation

§ Selection Criteria:
– Gartner’s Application Security Testing Magic Quadrant 2015
– Gartner’s Critical Capabilities for Application Security Testing 2015 – Mobile App Testing
– Inclusion of NIAP Protection Profile for Application Software requirement checks
– Also include free tools that are easy to obtain / integrate

§ Tools:
– Android Lint (Included in Android Studio and Android SDK)
– 8 other commercial products

| 12 |

© 2017 The MITRE Corporation. All rights reserved. Approved for Public Release; Distribution Unlimited. Case Numbers 17-0968 and 16-4772.

Android Test
Results

| 13 |

© 2017 The MITRE Corporation. All rights reserved. Approved for Public Release; Distribution Unlimited. Case Numbers 17-0968 and 16-4772.

iOS Test
Results

| 14 |

© 2017 The MITRE Corporation. All rights reserved. Approved for Public Release; Distribution Unlimited. Case Numbers 17-0968 and 16-4772.

Overall Results

§ Feasible to detect and identify many common security vulnerabilities
§Best solutions performed a combination of static and dynamic analysis

– Both are required to get a full picture of app properties and actual runtime behavior
§ Identifying vulnerabilities vs. identifying malicious behavior are different

use cases – many vendors focus on one or the other
§Detecting malicious behavior is a much harder problem

– Easy for malicious app to detect presence of analysis environment
§ e.g. Presence of Xposed Framework (Android), Cydia (iOS)

– Malicious apps can dynamically download and execute harmful code at runtime (including
iOS)

– Recommend continued investigation into reputation analysis capabilities
§ Vendors are starting to incorporate the NIAP App PP requirements into

their analysis and reports

| 15 |

© 2017 The MITRE Corporation. All rights reserved. Approved for Public Release; Distribution Unlimited. Case Numbers 17-0968 and 16-4772.

Outcomes

§Repeatable criteria, process, and example apps suitable for testing
effectiveness of app vetting tools

§Results of applying criteria to leading industry tools
§ Provided feedback to help vendors improve their products
§ Feedback to NIAP on streamlining the Protection Profile for Application

Software
– Decrease time and cost of app evaluations
– Rely on device security architecture where possible
– Prefer requirements/tests that are automatable

| 16 |

© 2017 The MITRE Corporation. All rights reserved. Approved for Public Release; Distribution Unlimited. Case Numbers 17-0968 and 16-4772.

Overview: Improving Android Application Security

§ Users and enterprises want assurance that applications installed on their
mobile devices can be safely used
– But individually assessing application security can be time consuming and expensive

§ We will describe efforts to improve confidence in Android app security
– Integrate security checks into the app development process to help developers follow best

practices and avoid common mistakes
– Build upon Android’s platform security architecture to:
§ decrease likelihood of code weaknesses
§ prevent exploitation of vulnerabilities

§ Contributions made to the Android Open Source Project
– Open to external contributors
– Android app developer tools
– Android platform security architecture (SELinux policies)

| 17 |

© 2017 The MITRE Corporation. All rights reserved. Approved for Public Release; Distribution Unlimited. Case Numbers 17-0968 and 16-4772.

Mobile Application Development Tools

§ Android Studio and the Android Software
Development Kit (SDK) are commonly used by
app developers

§ Android Lint – Part of the Android Open
Source Project
– Static analysis tool integrated into Android

Studio and the Android SDK

§ Android Lint (and similar tools) can:
– Alert developers to security weaknesses early

in their development lifecycle when they are
easiest and cheapest to fix

– Encourage developers to comply with best
practices

| 18 |

© 2017 The MITRE Corporation. All rights reserved. Approved for Public Release; Distribution Unlimited. Case Numbers 17-0968 and 16-4772.

Android Platform Security Architecture

§Android’s security architecture provides inherent protection against
exploitation of many common app vulnerabilities, and protection from
malicious actions by apps

§Apps are sandboxed from each other and from underlying system
§App developer must declare properties up-front in manifest

– Apps must request and obtain permission to access sensitive resources
§Not a complete solution – but important to understand its benefits and

take into account when assessing app security

Mobile Operating
System

Hardware-Backed Security Components
(Crypto, integrity measurement, etc.)

| 19 |

© 2017 The MITRE Corporation. All rights reserved. Approved for Public Release; Distribution Unlimited. Case Numbers 17-0968 and 16-4772.

Examples of Common Mobile App Security Issues

§ Insecure Network Communication (OWASP Mobile Top Ten: M3)
§ Insecure Data Storage (OWASP Mobile Top Ten: M2)
§ Insecure Dynamic Code Execution

(Not intended to be a comprehensive list)

| 20 |

© 2017 The MITRE Corporation. All rights reserved. Approved for Public Release; Distribution Unlimited. Case Numbers 17-0968 and 16-4772.

Insecure Network Communication

§ Problem: Network communication weaknesses are regularly found in
mobile apps, and they can be easy to exploit because mobile devices
are often used on unprotected networks (e.g. public Wi-Fi)
– Plaintext network communication
– Java TrustManager overridden with insecure version that skips certificate validation
– Java HostnameVerifier overridden with insecure version

| 21 |

© 2017 The MITRE Corporation. All rights reserved. Approved for Public Release; Distribution Unlimited. Case Numbers 17-0968 and 16-4772.

Insecure Network Communication Solutions:
App Development Process

§We contributed new checks to Android Lint
– Detect insecure TrustManager
– Detect insecure HostnameVerifier
– Detect insecure SSLCertificateSocketFactory

| 22 |

© 2017 The MITRE Corporation. All rights reserved. Approved for Public Release; Distribution Unlimited. Case Numbers 17-0968 and 16-4772.

Insecure Network Communication Solutions:
App Development Process

The lint checks are being used by real projects:

Used in Continuous Integration (CI) builds

| 23 |

© 2017 The MITRE Corporation. All rights reserved. Approved for Public Release; Distribution Unlimited. Case Numbers 17-0968 and 16-4772.

Insecure Network Communication Solutions:
App Development Process

DO NOT DO THIS!!!!
(without a really good
reason)

Good news: Developers are using Android Lint and its security checks
Bad news: Stack Overflow advice may evolve to work around the checks

| 24 |

© 2017 The MITRE Corporation. All rights reserved. Approved for Public Release; Distribution Unlimited. Case Numbers 17-0968 and 16-4772.

Insecure Network Communication Solutions:
App Development Process: Google Play Enforcement

| 25 |

© 2017 The MITRE Corporation. All rights reserved. Approved for Public Release; Distribution Unlimited. Case Numbers 17-0968 and 16-4772.

Insecure Network Communication Solutions:
Platform Security Architecture

§Android 7 and up: Network Security Configuration
– App developer declares app’s network security properties in an XML file
– Reduces need for app developer to muck with security sensitive code
– Policies can be easily examined by app stores, security assessors
– Caution: Policies may not be enforced by third-party networking libraries

§ iOS 9 and up: App Transport Security (ATS)
– Enforces encrypted communication by apps and compliance with best practices
§ Enabled by default, apps must explicitly opt-out

– Apple may enforce App Transport Security as a condition for App Store publication
§ Planned for January 2017, but delayed

– 80% of top 50 iOS apps opt-out from HTTPS requirement (NowSecure – 08/2016)
– 97% of top 200 iOS apps opt-out from at least one aspect of ATS (Appthority – 12/2016)

| 26 |

© 2017 The MITRE Corporation. All rights reserved. Approved for Public Release; Distribution Unlimited. Case Numbers 17-0968 and 16-4772.

Insecure Data Storage

§ Problem: Android’s default file permissions prevent apps from reading
or writing files belonging to other apps. However, apps may set their
files world readable or world writable, either inadvertently or due to a
desire for data sharing with other apps.

| 27 |

© 2017 The MITRE Corporation. All rights reserved. Approved for Public Release; Distribution Unlimited. Case Numbers 17-0968 and 16-4772.

Insecure Data Storage Solutions:
App Development Process

§ Android Lint already included checks to identify use of MODE_WORLD_READABLE
and MODE_WORLD_WRITEABLE

§ We expanded the cases covered by the existing checks, and added new checks for
setReadable and setWritable

| 28 |

© 2017 The MITRE Corporation. All rights reserved. Approved for Public Release; Distribution Unlimited. Case Numbers 17-0968 and 16-4772.

Insecure Data Storage Solutions:
Platform Security Architecture

§ Security improvements in Android 7
– For apps that target compatibility with Android 7 and up (targetSdkVersion >= 24)
– App data directories are now mode 0700 by default (-rwx------)
§ Blocks access by other apps to files, even when those files have insecure permissions
§ However, doesn’t stop an app from changing permissions of its own data directory

– MODE_WORLD_READABLE / WRITEABLE not allowed

§Our proposed next step
– Apply SELinux Mandatory Access Control policies to block access to other apps’ files

regardless of file and directory permissions
§ Phase in by applying to all apps targeting a particular API level and higher (targetSdkVersion)

– e.g. https://android-review.googlesource.com/#/c/195590/
§ Developers can still use Android Content Provider for controlled data sharing between apps

| 29 |

© 2017 The MITRE Corporation. All rights reserved. Approved for Public Release; Distribution Unlimited. Case Numbers 17-0968 and 16-4772.

Dynamic Code Execution

§ Problem: Apps can download and execute new code not included in the
original application package

§ Vulnerable apps
– When combined with insecure network communication or insecure file permissions, an

adversary can replace the dynamic code with something malicious
– e.g. Vulnerabilities discovered by NowSecure in Poweramp, SwiftKey, Vungle apps

§ Malicious apps
– Deliberately download and execute exploit code after installation to evade security reviews
– e.g. BeNews Android app allegedly leaked from Hacking Team, Poeplau et al. (NDSS ’14),

Victor van der Veen’s Android Security Symposium talk

| 30 |

© 2017 The MITRE Corporation. All rights reserved. Approved for Public Release; Distribution Unlimited. Case Numbers 17-0968 and 16-4772.

Dynamic Code Execution Solutions:
App Development Process

§ We contributed Android Lint rules to encourage app developers to follow best practices
– Use loadLibrary, not load. loadLibrary constrains the locations that native code can be loaded from.

– Detect ELF binaries in the app package outside of the lib directory and encourage the developer not to do that.

| 31 |

© 2017 The MITRE Corporation. All rights reserved. Approved for Public Release; Distribution Unlimited. Case Numbers 17-0968 and 16-4772.

Dynamic Code Execution Solutions:
Platform Security Architecture

§ Best Practice: Native shared libraries
should be in the app package’s lib directory
– At app install time, Android’s Package

Manager extracts these into /data/app-lib
– Apps themselves cannot modify the libraries

§ Unfortunately, some apps do not follow this
best practice
– March 2014: 71 out of 2420 top Google Play

apps had an executable or shared library in
the APK outside of lib directory (we
recommend performing an updated analysis)

§ Our proposal: Enforce this best practice
through SELinux policy
– Prevent apps from executing code from

locations that they can write to
– Phase in based on app’s targetSdkVersion

(from NowSecure example on previous slide)

| 32 |

© 2017 The MITRE Corporation. All rights reserved. Approved for Public Release; Distribution Unlimited. Case Numbers 17-0968 and 16-4772.

Dynamic Code Execution:
Challenges with Modifying Platform Security Architecture

§ Compatibility issues
– Apps with shared libraries outside lib directory
– Apps that embed native executables

§ DexClassLoader and Android Runtime (ART)
– dex2oat runs in app’s context, compiles Dalvik bytecode into native code
– If execution is blocked, the compiled native code can’t run
§ The app still works -- Android falls back to use an interpreter to execute the bytecode

§ Apps could still map memory as writable and executable
– Copperhead Security proposed addressing this using PaX MPROTECT
§ Can also address with SELinux execmem

– But restricting executable memory introduces compatibility concerns
§ JIT compilers within web browsers and within the Android Runtime (ART)
§ See our paper for more details

| 33 |

© 2017 The MITRE Corporation. All rights reserved. Approved for Public Release; Distribution Unlimited. Case Numbers 17-0968 and 16-4772.

Recent Android Open Source Project Changes

§ Changes in AOSP master – not all are in a released Android version yet

§ Ability to set SELinux domain based on app’s targetSdkVersion
– Allows phasing in new security policies applied to apps
– Based on our proposed code
– https://android-

review.googlesource.com/#/q/status:merged+project:platform/system/sepolicy+branch:master+t
opic:selinux-targetSdkVersion

§ New untrusted_v2_app and ephemeral_app SELinux domains with stricter
security policies
– Enforces stronger protection on app internal data storage directory
– Addresses dynamic code execution by preventing execution of app data files
– https://android.googlesource.com/platform/system/sepolicy/+/master

| 34 |

© 2017 The MITRE Corporation. All rights reserved. Approved for Public Release; Distribution Unlimited. Case Numbers 17-0968 and 16-4772.

Conclusions and Potential Future Work

§ Mobile platforms provide a security architecture that can leveraged and built
upon to gain confidence in and improve mobile app security

§ Developer behavior can be influenced through the mobile app development
process
– Android Lint (and other tools) can help developers avoid mistakes, follow best practices
– Google Play Store (and other app stores) can enforce compliance

§ Potential Future Work
– Incentives for app developers to actually use new platform security features
§ e.g. Target the latest Android API level and use Network Security Configuration feature

– Tools to help app developers use new platform security features
§ e.g. Android Studio feature to help developers write Network Security Configuration policies

– More Android Lint security checks
– Continue strengthening Android security policies to reduce attack surfaces, prevent exploitation

of vulnerabilities

| 35 |

© 2017 The MITRE Corporation. All rights reserved. Approved for Public Release; Distribution Unlimited. Case Numbers 17-0968 and 16-4772.

Resources for More Information

§Our technical reports
– https://www.mitre.org/publications/technical-papers/android-security-analysis-final-report
– https://github.com/mitre/vulnerable-mobile-apps/raw/master/analyzing-effectiveness-

mobile-app-vetting-tools.docx

§Our source code
– https://mitre.github.io/vulnerable-mobile-apps/

§Contact information
– cnorthern@mitre.org and mpeck@mitre.org

