Assessing and Improving Mobile
Application Security

Carlton Northern
Michael Peck

March 2017

MITRE
orporation. All rights reserved.

About Us

" The MITRE Corporation

— Not-for-profit organization
— Operates federally funded research and development centers (FFRDCs)

= Carlton Northern
— Chief Engineer at MITRE focusing on mobile security solutions

" Michael Peck

— Security Engineer at MITRE primarily focusing on mobile security

© 2017 The MITRE Corporation. All rights reserved. Approved for Public Release; Distribution Unlimited. Case Numbers 17-0968 and 16-4772. MITRE

Outline

= Analyzing the Effectiveness of Mobile Application Vetting Tools
— Mobile Application Security Architecture
— Analysis Criteria
— Vulnerable and Malicious Mobile Apps for Testing
— Analysis Results
— QOutcomes

®" Improving Android Application Security

— Contributions to the Android Open Source Project
= Android app developer tools
= Android platform security architecture

© 2017 The MITRE Corporation. All rights reserved. Approved for Public Release; Distribution Unlimited. Case Numbers 17-0968 and 16-4772. MITRE

Overview: Analyzing Mobile App Vetting Tools

= Goal: Analyze feasibility for enterprises to apply automated tools to
determine whether apps are safe to use on mobile devices
— Ability for tools to identify security vulnerabilities
— Ability for tools to identify potentially malicious or privacy violating behaviors
— Integration of tools with Enterprise Mobility Management systems
— Capability for reputation analysis of apps and app developers

" Methodology:
— Understand current Android and iOS app security architecture and initiatives
— Formulate analysis criteria

— Develop test apps that demonstrate vulnerable and malicious behavior that map to the
criteria

— Assess a number of commercial and free mobile app vetting solutions by scanning the test
apps

© 2017 The MITRE Corporation. All rights reserved. Approved for Public Release; Distribution Unlimited. Case Numbers 17-0968 and 16-4772. MITRE

Mobile Application Security Architecture

Numerous mitigations are inherently provided by the security architecture of mobile devices

Brightest LED Flashlight
needs access to

¥O) Device & app history v

Mobile Operating BY PhotosiMediarfies

System Y5 Camera v

Hardware-Backed Security Components @ Wi connection v
(Crypto, integrity measurement, etc.)

m Device ID & call information v

(Privacy Contacts mEE®F % NG % 4 soom 1:30 P
“Easy Backup” Would Like to - < App permissions : 3 Allow RuntimePermissi
Access Your Contacts wp Good ow Runmiimer ermissions
) azon Shobpin — to access your contacts?
TR &) Google Earth b=/ PPing
Don’t Allow OK & owa DENY ALLOW

D @ Camera a@
@)

Easy Backup

Applications that have requested access to your contacts will
appear here.

E Contacts Lo

= Apps are sandboxed from each other and underlying system
= Apps must request and obtain permission to access sensitive resources

© 2017 The MITRE Corporation. All rights reserved. Approved for Public Release; Distribution Unlimited. Case Numbers 17-0968 and 16-4772.

MITRE

Mobile Application Security Architecture Enhancements

= Continuing to evolve in response to common app vulnerabilities
— Will discuss later

" Evolving in response to emerging threats, malicious behaviors
— Changes to Android Device Admin APl in response to ransomware (Android 6)
— Remove ability for Android apps to see MAC addresses, other processes (Android 6 / 7)
— Runtime permission requests (Android 6)
— Apple iOS restrictions on installing non-App Store apps (iOS 9)

= Additional information

— Google I/0O 2016: What's new in Android security (M and N) video
= https://www.youtube.com/watch?v=XZzL |llizYs

— Apple WWDC 2016: What's New in Security video
= https://developer.apple.com/videos/play/wwdc2016/706/

Security architecture enhancements can be leveraged during app security testing

© 2017 The MITRE Corporation. All rights reserved. Approved for Public Release; Distribution Unlimited. Case Numbers 17-0968 and 16-4772. MITRE

Analysis Criteria

= National Information Assurance Partnership’s (NIAP) Protection Profile (PP) for Application
Software

— Security criteria requirements for software applications (mobile, desktop, server) common criteria evaluation.

— Security requirements focusing on encryption, access to platform resources (information repositories and
hardware), use of PIlI, configuration and anti-exploitation

— https://www.niap-ccevs.org/profile/Info.cfm?id=394

= Qur criteria is based on the NIAP PP for Application Software
— 16 out of the PP’s 25 mandatory security functional requirements
— 6 requirements may not be automatable and 3 not necessary on Android and iOS

= Ability to identify security vulnerabilities, e.g.:
— Cryptographic issues (e.g. randomness, key storage)
— Insecure data storage
— Insecure network communication
— Memory mappings
— Third-party library issues
— Inter-process communication issues

© 2017 The MITRE Corporation. All rights reserved. Approved for Public Release; Distribution Unlimited. Case Numbers 17-0968 and 16-4772. MITRE

Analysis Criteria (cont’d)

= Ability to identify potentially inappropriate behaviors, e.g.:
— Access to hardware resources and sensitive repositories
— Dynamic code execution
— Report all network communication
— App includes well-known device exploit code
— i10S URL scheme hijacking
— Requests Android Device Administration access

= Security of the app vetting system itself
— Ability to resist analysis environment detection by malicious apps
— Doesn’t reveal information about other apps under analysis in multi-tenant environment

" Reporting capabilities
— Supported output formats
— APls
— Integration with EMM/MDM systems

© 2017 The MITRE Corporation. All rights reserved. Approved for Public Release; Distribution Unlimited. Case Numbers 17-0968 and 16-4772. MITRE

Android Vulnerable and Malicious Test Apps

= UploadDataApp
— Grabs lots of sensitive data and sends to remote server
— Uses both HTTP and HTTPS with cert validation disabled
— Etc.
= CustomClassLoader
— Modified sample app from Google
— Downloads and executes .DEX and .SO files
— Downloads and stores files insecurely
" DeviceAdminReceiver
— Google sample app that activates Device Admin

= App with older version of OpenSSL embedded

Available soon at https://mitre.github.io/vulnerable-mobile-apps/

© 2017 The MITRE Corporation. All rights reserved. Approved for Public Release; Distribution Unlimited. Case Numbers 17-0968 and 16-4772. MITRE

10

I0OS Vulnerable and Malicious Test App

= AcmeAirlines
— Insecure network communications
— Insecure storage | i
— Collects data and send to remote server
— Dynamic code execution with JSPatch*

Flight Notes

— URI scheme hijacking
— Time-bomb exploit
— Etc.

*https://www.fireeye.com/blog/threat-research/2016/04/rollout_or_not_the.html

© 2017 The MITRE Corporation. All rights reserved. Approved for Public Release; Distribution Unlimited. Case Numbers 17-0968 and 16-4772. MITRE

11

Vendors / Products Included in Evaluation

= Selection Criteria:
— Gartner’s Application Security Testing Magic Quadrant 2015
— Gartner’s Critical Capabilities for Application Security Testing 2015 — Mobile App Testing
— Inclusion of NIAP Protection Profile for Application Software requirement checks
— Also include free tools that are easy to obtain / integrate

" Tools:
— Android Lint (Included in Android Studio and Android SDK)
— 8 other commercial products

© 2017 The MITRE Corporation. All rights reserved. Approved for Public Release; Distribution Unlimited. Case Numbers 17-0968 and 16-4772. MITRE

© 2017 The MITRE Corporatior

Assessment Criteria

3A Static IV for Encryption

3B Cleartext Password File Storage

3C Insecure Internal File Storage
Insecure External File Storage

3D Report Network Destinations and Ports
Sensitive Data Cleartext
Certificate Checking & Hostname Verify

3E Embedded Default Credentials

3F Memory Mapping Explicit Locations

3G Memory Mapping Write and Execute

3H Latest OS Anti-exploitation

3J Executable Code Storage

3K Stack-based Buffer Overflow Protection

3L Identify 3rd Party Libraries

3M Other Crypto Issues

3N Inter-app Communication Security
Issues

4A Device Resource Permissions
4B Sensor Access
Sensitive Information Acess

4D Dynamic Code Execution

4E Use of Private/Unsupported APIs

4F Obfuscation Detection

4G Identify Known Malicious Code

4H Device Administrator Access

5A Detect Analysis Environment

5B Multi-tenant Concerns

6A Output formats

6B Provide Evidence of Findings

6C Enterprise Integration capabilities

Android Test
Results

12

MITRE

Assessment Criteria Y YT E YL YL 19

3A Static IV for Encryption

3B Cleartext Password File Storage

3C nsecure Internal File Storage

3D Report Network Destinations and Ports
Sensitive Data Cleartext
Certificate Checking & Hostname Verify

3E Embedded Default Credentials

3H Latest OS Anti-exploitation

3L Identify 3rd Party Libraries

3M Other Crypto Issues i OS TeSt

3N / inter-app Communication Security

4A Device Resource Permissions RES U |tS

4B Sensor Access

Sensitive Information Acess
4D Dynamic Code Execution
4E Use of Private/Unsupported APIs
4F Obfuscation Detection
5A Detect Analysis Environment
5B Multi-tenant Concerns
6A Output formats
6B Provide Evidence of Findings
6C Enterprise Integration capabilities

7A Unsanitized Input
©201717B Code Coverage MITRE

14

Overall Results

" Feasible to detect and identify many common security vulnerabilities

= Best solutions performed a combination of static and dynamic analysis
— Both are required to get a full picture of app properties and actual runtime behavior

= |dentifying vulnerabilities vs. identifying malicious behavior are different
use cases — many vendors focus on one or the other
" Detecting malicious behavior is a much harder problem

— Easy for malicious app to detect presence of analysis environment
= e.g. Presence of Xposed Framework (Android), Cydia (iOS)

— Malicious apps can dynamically download and execute harmful code at runtime (including
iI0S)
— Recommend continued investigation into reputation analysis capabilities

" Vendors are starting to incorporate the NIAP App PP requirements into
their analysis and reports

© 2017 The MITRE Corporation. All rights reserved. Approved for Public Release; Distribution Unlimited. Case Numbers 17-0968 and 16-4772. MITRE

15

Outcomes

= Repeatable criteria, process, and example apps suitable for testing
effectiveness of app vetting tools

= Results of applying criteria to leading industry tools
" Provided feedback to help vendors improve their products

=" Feedback to NIAP on streamlining the Protection Profile for Application
Software

— Decrease time and cost of app evaluations
— Rely on device security architecture where possible
— Prefer requirements/tests that are automatable

© 2017 The MITRE Corporation. All rights reserved. Approved for Public Release; Distribution Unlimited. Case Numbers 17-0968 and 16-4772. MITRE

16

Overview: Improving Android Application Security

= Users and enterprises want assurance that applications installed on their
mobile devices can be safely used

— But individually assessing application security can be time consuming and expensive

= We will describe efforts to improve confidence in Android app security

— Integrate security checks into the app development process to help developers follow best
practices and avoid common mistakes

— Build upon Android’s platform security architecture to:
= decrease likelihood of code weaknesses
= prevent exploitation of vulnerabilities

= Contributions made to the Android Open Source Project
— Open to external contributors
— Android app developer tools
— Android platform security architecture (SELinux policies)

© 2017 The MITRE Corporation. All rights reserved. Approved for Public Release; Distribution Unlimited. Case Numbers 17-0968 and 16-4772. MITRE

Mobile Application Development Tools

[] []
M - - OHE O o6 [0 ol ¢
= Android Studio and the Android Software
. Em O & | #- I-
Development Kit (SDK) are commonly used by & =»
app developers ; JaViom.exvample.dex

s+ Captures

Source Project

= Android Lint — Part of the Android Open
— Static analysis tool integrated into Android > Gt St
Studio and the Android SDK

[5] MainActivity.java - custom-class-loader - [~/

4 ot appiniv | P & B s oy ¥

java com example dex ;€ MainActivity.java

€ MainActivity.java X

b
I

public final static String EXTRA_MESSAGE = "com.t
private static final String SECONDARY_DEX_NAME =
private static final String SO_NAME = "libhello-

private static String dex_url;
private static String nativelib_url;

private SharedPreferences sharedPref;

private static final int BUF SIZE = 8 % 1024;

private Button mToastButtonDEX = null;

private Button mToastButtonLoadDex = null;
private Button mToastButtonSO = null;

private Button mToastButtonLoadSo = null;
private Button mToastButtonLoadSoLocal = null;
private Switch mInsecureSwitch = null;

private boolean insecureFilePermissions = false;

= Android Lint (and similar tools) can: o

— Alert developers to security weaknesses early
in their development lifecycle when they are e
easiest and cheapest to fix

— Encourage developers to comply with best
practices

© 2017 The MITRE Corporation. All rights reserved. Approved for Public Release; Distribution Unlimited. Case Numbers 17-0968 and 16-4772.

custom-class-loader — -bash — 94x21

pilationSafeguard UP-TO-DATE

tBuild UP-TO-DATE

_T0-DATE
TE
UP-TO-DATE

using the Gradle Daemon: htt radle.org/2

17

MITRE

18

Android Platform Security Architecture

= Android’s security architecture provides inherent protection against
exploitation of many common app vulnerabilities, and protection from
malicious actions by apps

(v @aa)

Mobile Operating
System

Hardware-Backed Security Components
(Crypto, integrity measurement, etc.)

= Apps are sandboxed from each other and from underlying system
= App developer must declare properties up-front in manifest
— Apps must request and obtain permission to access sensitive resources

*= Not a complete solution — but important to understand its benefits and
take into account when assessing app security

© 2017 The MITRE Corporation. All rights reserved. Approved for Public Release; Distribution Unlimited. Case Numbers 17-0968 and 16-4772. MITRE

19

Examples of Common Mobile App Security Issues

" Insecure Network Communication (OWASP Mobile Top Ten: M3)
" Insecure Data Storage (OWASP Mobile Top Ten: M2)
" Insecure Dynamic Code Execution

(Not intended to be a comprehensive list)

© 2017 The MITRE Corporation. All rights reserved. Approved for Public Release; Distribution Unlimited. Case Numbers 17-0968 and 16-4772. MITRE

20

Insecure Network Communication

" Problem: Network communication weaknesses are regularly found in
mobile apps, and they can be easy to exploit because mobile devices
are often used on unprotected networks (e.g. public Wi-Fi)

— Plaintext network communication
— Java TrustManager overridden with insecure version that skips certificate validation
— Java HostnameVerifier overridden with insecure version

RSAConference2015
i), San Francisco | April 20-24 | Moscone Center
Why Eve and Mallory Love Android: QO\ Fi reEye Customer Stories Blogs
An Analysis of Android SSL (In)Security
Products Solutions Mandiant Consulting Current Threats Partners Su| Ll
Tﬁgﬁgg;ﬁgléxﬂgaﬁeﬁbgg?fh Lger:am'?g?;.}gﬁ.r'ssc"‘;:gﬂ?isslx" Home) FireEye Blogs) Threat Research)» August 2014 Threat Research Blog Posts) HOW We Discovered Thousands
D‘s"lbe;“::l\’qcl.jm%‘vl:us &mnrm(?roun Philinﬁq‘ézg@;&'ﬂ“ﬁ'mfg SSL Vulnerabilities: Who listens when Android appl Of Vu I nerable Android Apps in 1
{fahl harbac:a;m:;s&mw uni i (Ibaumggelrjlr:\ie:ﬁarm'g de D
A ! smith} - jormatik.uni- .
hannover.de SSL VULNERABILITIES: WHO LISTENS WHEN o f
ANDROID APPLICATIONS TALK?
August 20, 2014 | by Adrian Mettler, Yulong Zhang, Vishwanath Raman | Mobile Threats, Threat Research Joji Montelibano e VWIIIVDormann -
Vulnerability Analysis Technical Manager Vulnerability Analyst
F . CERT CERT
The Most Dangerous Code in the World: il TR

Validating SSL Certificates in Non-Browser Software

Security Concerns in Android mHealth Apps

Martin Georgiev Subodh Iyengar Suman Jana ER: Large Scale, Automated Detection of SSL/TLS Man-in-the-Middle

The University of Te Stanford Universit The University of Te N Vulnerabilities in Android A
Ryt Al anlora niverstty M A Dongjing He, Muhammad Naveed, Carl A. Gunter, Klara Nahrstedt pps
Rishita Anubhai Dan Boneh Vitaly Shmatikov Dept. of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL
Stanford University Stanford University The Unive/r\sity of Texas

at Austin

David Sounthiraraj Justin Sahs Garret Greenwood ~ Zhigiang Lin Latifur Khan
Department of Computer Science, The University of Texas at Dallas

{david.sounthiraraj, justin.sahs, garrett.greenwood, zhigiang.lin, Ikhan} @utdallas.cdu
© 2017 The MITRE Corporation. All rights reserved. Approved for Public Release; Distribution Unlimited. Case Numbers 17-0968 and 16-4772. MITRE

21

Insecure Network Communication Solutions:
App Development Process

" We contributed new checks to Android Lint

— Detect insecure TrustManager
— Detect insecure HostnameVerifier
— Detect insecure SSLCertificateSocketFactory

Kl
~

// from http://blog.denevell.org/android-trust-all-ssl-certificates.html
TrustManager[] trustAllCerts = new TrustManager[] {

S new X509TrustManager() {
= @Override
s o public void checkClientTrusted(X509Certificate[] certs, String authType) { }
~I
hve , @0verride
o/ = public void checkServerTrusted(X509Certificate[] certs, String authType) { }
checkSe rverTrusted is empty, which could cause insecure network traffic due to trusting arbitrary TLS/SSL certificates presented by peers more... (38F1)

=T meslaT @ e VENNIM A b s s and AT P LI P B b e N r 1

MITRE

© 2017 The MITRE Corporation. All rights reserved. Approved for Public Release; Distribution Unlimited. Case Numbers 17-0968 and 16-4772.

22

Insecure Network Communication Solutions:
App Development Process

The lint checks are being used by real projects:

C | & GitHub, Inc. [US] https://github.com/aws/aws-sdk-android/issues/124

Android Lint failing with Insecure TLS/SSL trust manager.

(GA+ =l niqo01 opened this issue on May 5, 2016 - 4 comments

C & Secure https://gitlab.com/fdroid/fdroidclient/builds/147917
= F-Droid / Client /

Draioet v‘»[,,“_..l, Repository plpelines Granhe SSuUes “.’.""\’»4"" ot £

/builds/fdroid/fdroidclient/org/apache/commons/net/ftp/FTPSTrustManager.class: Warning: checkClientTrusted";
. . . . empty, which could cause insecure network traffic due to trusting arbitrary TLS/SSL certificates presented b
Used in Continuous Integration (Cl) builds | m—m—"
/builds/fdroid/fdroidclient/org/apache/commons/net/util/TrustManagerUtils$TrustManager.class: Warning: checkC
lientTrusted is empty, which could cause insecure network traffic due to trusting arbitrary TLS/SSL certifica
tes presented by peers [TrustAllX509TrustManager)

Explanation for issues of type "TrustAllX509TrustManager":

This check looks for X509TrustManager implementations whose
checkServerTrusted or checkClientTrusted methods do nothing (thus trusting
any certificate chain) which could result in insecure network traffic
caused by trusting arbitrary TLS/SSL certificates presented by peers.

© 2017 The MITRE Corporation. All rights reserved. Approved for Public Release; Distribution Unlimited. Case Numbers 17-0968 and 16-4772. MITRE

23

Insecure Network Communication Solutions:
App Development Process

Good news: Developers are using Android Lint and its security checks
Bad news: Stack Overflow advice may evolve to work around the checks

< C (@ stackoverflow.com/questions/39352818/retrofit-2-unable-to-resolve-host

@Override
public void c ClientTrusted(X509Certificate[] chain, String

} DO NOT DO THIS!!!
@Su rustManager") (without a really good
@Override reason)

public void checkServerTrusted(X589Certificate[] chain, String

}

© 2017 The MITRE Corporation. All rights reserved. Approved for Public Release; Distribution Unlimited. Case Numbers 17-0968 and 16-4772. MITRE

24

Insecure Network Communication Solutions:
App Development Process: Google Play Enforcement

https://developer.android.com/google/play/asi.html

DESIGN DEVELOP DISTRIBUTE Q Search

. App Security Improvement Program

& GitHub, Inc. [US] https://github.com/aws/aws-sdk-android/issues/160

Play Store Security Alert on X509TrustManager #7160

(G4 T jullylau opened this issue on Jun 23, 2016 - 1 comment

|-J @ Secure https://support.google.com/fags/answer/6346016

How to fix apps containing an unsafe
implementation of TrustManager

< < | W LINUD, INC. LUD) NUPS://gINup.comjaws;aws-sak-anaroigypionymaster/ CHANGELOG.md#release-2218-06022016

Release 2.2.18 (06/02/2016)

Bug Fixes

« AWS Core Runtime Library: Removed testing implementation for X509TrustManager , for more information see.

© 2017 The MITRE Corporation. All rights reserved. Approved for Public Release; Distribution Unlimited. Case Numbers 17-0968 and 16-4772. MITRE

25

Insecure Network Communication Solutions:
Platform Security Architecture

= Android 7 and up: Network Security Configuration
— App developer declares app’s network security properties in an XML file
— Reduces need for app developer to muck with security sensitive code
— Policies can be easily examined by app stores, security assessors
— Caution: Policies may not be enforced by third-party networking libraries

= iOS 9 and up: App Transport Security (ATS)

— Enforces encrypted communication by apps and compliance with best practices
= Enabled by default, apps must explicitly opt-out
— Apple may enforce App Transport Security as a condition for App Store publication
= Planned for January 2017, but delayed
— 80% of top 50 i0OS apps opt-out from HTTPS requirement (NowSecure — 08/2016)
— 97% of top 200 iOS apps opt-out from at least one aspect of ATS (Appthority — 12/2016)

© 2017 The MITRE Corporation. All rights reserved. Approved for Public Release; Distribution Unlimited. Case Numbers 17-0968 and 16-4772. MITRE

Insecure Data Storage

26

" Problem: Android’s default file permissions prevent apps from reading
or writing files belonging to other apps. However, apps may set their
files world readable or world writable, either inadvertently or due to a

desire for data sharing with other apps.

ramp Mi Player app uses lax file permissions for preference files and some of its executable code

root@hammerhead: /data/data/com.maxmpz.audioplayer/files #
~rW=rw-rw- u@_ag96 ud_as%6 1187312 2015-07-30 13:43 libaudioplayer_native.so
~rw-rw-rw- u@_ag6 ud_a% 690168 2015-07-30 13:43 Llibpampffmpeqg.so

root@hammerhead: /data/data/com.maxmpz.audioplayer/shared_prefs

~rw-rw-rw- u@_a% u0@_a% 372 2015-07-30@ 12:43 PlayerService.xml

~rw-rw— u@_a% u@_ag6 130 2015-87-29 16:32 _has_set_default_values.xml

~rw=rw-rw- u@_ag%6 ud_as%6 8508 2015-07-29 16:32 com.maxmpz.audioplayer_preferences.xml
~rw-rw-rw- u@_a%9%6 ud_a% 1103 2015-07-29 16:32 eq.xml

-rw-=rw-- u@_a%6 u@_ag%6 101 2015-087-29 16:32 L.xml

© 2017 The MITRE Corporation. All rights reserved. Approved for Public Release; Distribution Unlimited. Case Numbers 17-0968 and 16-4772.

[Updated] Exclusive:

Vulnerability In Skype For
t} Android Is Exposing Your

: Name, Phone Number, Chat

Logs, And A Lot More

Justin Case G+5 f22
\ =) Apr 14,2011

Is -l /data/data/com.skype.merlin_mecha/files/jcaseap
-rw-rw-rw- app_152 app_152 331776 2011-04-13 00:08 main.db
-rw-rw-rw- app_152 app_152 119528 2011-04-13 00:08 main.db-
journal

-rw-rw-rw- app_152 app_152 40960 2011-04-11 14:05 keyval.db
-rw-rw-rw- app_152 app_152 3522 2011-04-12 23:39 config.xml
drwxrwxrwx app_152 app_152 2011-04-11 14:05 voicemail

MITRE

27

Insecure Data Storage Solutions:
App Development Process

= Android Lint already included checks to identify use of MODE_WORLD_READABLE
and MODE_WORLD_WRITEABLE

public void loadDex(Activity ctx, File nativepath) {

File optimizedDexOutputPath;
if (insecureFilePermissions)

optimizedDexOutputPath = getDir("outdex", Context.MODE_WORLD _READABLE |Context.MODE_WORLD WRITEABLE);

alen

Using MODE_WORLD_READABLE when creating files can be risky, review carefully less... (8€F1)

There are cases where it is appropriate for an application to write world readable files, but these should be reviewed carefully to ensure that they contain no private data that is leaked

to other applications.
'MODE_WORLD_READABLE' is deprecated less... ($F1)

This inspection reports where deprecated code is used in the specified inspection scope.

= We expanded the cases covered by the existing checks, and added new checks for
setReadable and setWritable

if (insecureFilePermissions) {

nativePath.lsetReadabld(true, false);

nativePath.setWritable(true, false);

«J 7:5tr.

L
Setting file permissions to world-writable can be risky, review carefully less... (38F1)

Setting files world-writable is very dangerous, and likely to cause security holes in applications. It is strongly discouraged; instead, applications should use more formal mechanisms

for interactions such as ContentProvider, BroadcastReceiver, and Service.

© 2017 The MITRE Corporation. All rights reserved. Approved for Public Release; Distribution Unlimited. Case Numbers 17-0968 and 16-4772.

28

Insecure Data Storage Solutions:
Platform Security Architecture

= Security improvements in Android 7

— For apps that target compatibility with Android 7 and up (targetSdkVersion >= 24)
— App data directories are now mode 0700 by default (-rwx------)
= Blocks access by other apps to files, even when those files have insecure permissions

= However, doesn’t stop an app from changing permissions of its own data directory
— MODE_WORLD READABLE / WRITEABLE not allowed

= Our proposed next step

— Apply SELinux Mandatory Access Control policies to block access to other apps’ files
regardless of file and directory permissions
= Phase in by applying to all apps targeting a particular API level and higher (targetSdkVersion)
— e.g. https://android-review.googlesource.com/#/c/195590/
= Developers can still use Android Content Provider for controlled data sharing between apps

© 2017 The MITRE Corporation. All rights reserved. Approved for Public Release; Distribution Unlimited. Case Numbers 17-0968 and 16-4772. MITRE

29

Dynamic Code Execution

" Problem: Apps can download and execute new code not included in the
original application package

= Vulnerable apps

— When combined with insecure network communication or insecure file permissions, an
adversary can replace the dynamic code with something malicious

— e.g. Vulnerabilities discovered by NowSecure in Poweramp, SwiftKey, Vungle apps

= Malicious apps
— Deliberately download and execute exploit code after installation to evade security reviews

— e.g. BeNews Android app allegedly leaked from Hacking Team, Poeplau et al. (NDSS ’14),
Victor van der Veen’s Android Security Symposium talk

https://developer.android.com/distribute/essentials/quality/core.html#sc

CO re Ap p Q ua | |ty Execution SC-E1 App does not dynamically load code from outside the app's APK.

© 2017 The MITRE Corporation. All rights reserved. Approved for Public Release; Distribution Unlimited. Case Numbers 17-0968 and 16-4772. MITRE

30

Dynamic Code Execution Solutions:
App Development Process

= We contributed Android Lint rules to encourage app developers to follow best practices
— Use loadLibrary, not load. loadLibrary constrains the locations that native code can be loaded from.

try {
System. load(nativepath.toString());

1 e,catech(Evecantinan o) S

| Dynamically loading code using load is risky, please use loadLibrary instead when possible less... (88F1)

Dynamically loading code from locations other than the application's library directory or the Android platform's built-in library directories is dangerous, as there is an increased risk
that the code could have been tampered with. Applications should use loadLibrary when possible, which provides increased assurance that libraries are loaded from one of these
safer locations. Application developers should use the features of their development environment to place application native libraries into the lib directory of their compiled APKs.

— Detect ELF binaries in the app package outside of the /ib directory and encourage the developer not to do that.

Android > Lint > Performance (2 items) Name
Android > Lint > Security (37 items) Llibstagefright.so
AllowBackup/FullBackupContent Problems (2 items)
File.setReadable() used to make file world-readable (1 item)
File.setWritable() used to make file world-writable (1 item) Probl .
e roblem synopsis
%Insecure HostnameVer!f!er 'jl mjm'}\ Sharedyligraries should not be placed in the res or assets directories. Please use the features of your
= Insecure HostnameVerifier (2 items) development environment to place shared libraries in the lib directory of the compiled APK.
Insecure TLS/SSL trust manager (6 items)
|oad used to dynamically load code (1 item)
Native code outside library directory (1 item) Suppress
Caapp (1 item)
@ Shared libraries should not be placed in the res or assets directories. PI
8 openFileOutput() or similar call passing MODE_WORLD_READABLE (11 items)
openfFileOutput() or similar call passing MODE_WORLD_WRITEABLE (11 items)

Location
file .../app/src/main/assets/libstagefright.so — [appl

uppr with uppresslLint ava) or tools:ignore (XML

© 2017 The MITRE Corporation. All rights reserved. Approved for Public Release; Distribution Unlimited. Case Numbers 17-0968 and 16-4772. MITRE

31

Dynamic Code Execution Solutions:
Platform Security Architecture

= Best Practice: Native shared libraries = Our proposal: Enforce this best practice
should be in the app package’s lib directory through SELinux policy
— At app install time, Android’s Package — Prevent apps from executing code from
Manager extracts these into /data/app-lib locations that they can write to
— Apps themselves cannot modify the libraries — Phase in based on app’s targetSdkVersion
= Unfortunately, some apps do not follow this Copperhead0s o Fotow
best practice | |
The changes proposed in
— March 2014: 71 out of 2420 top Google Play and
apps had an executable or shared library in

. . . would be major game changers for the app
the APK outside of /ib directory (we security model.

recommend performing an updated analysis) SOELTE S Ea

root@hammerhead: /data/data/com.maxmpz.audioplayer/files
~rw-rw-=rw- u@_ag%6 ud_a9%6 1187312 2015-07-30 13:43 libaudioplayer_native.so
~rw-rw-rw- ud_a%6 ub_a9%6 690168 2015-87-30 13:43 libpampffmpeqg.so

(from NowSecure example on previous slide)

© 2017 The MITRE Corporation. All rights reserved. Approved for Public Release; Distribution Unlimited. Case Numbers 17-0968 and 16-4772. MITRE

Dynamic Code Execution:
Challenges with Modifying Platform Security Architecture

= Compatibility issues
— Apps with shared libraries outside /ib directory
— Apps that embed native executables

= DexClassLoader and Android Runtime (ART)

— dex2oat runs in app’s context, compiles Dalvik bytecode into native code
— If execution is blocked, the compiled native code can’t run
= The app still works -- Android falls back to use an interpreter to execute the bytecode

= Apps could still map memory as writable and executable
— Copperhead Security proposed addressing this using PaX MPROTECT
= Can also address with SELinux execmem

— But restricting executable memory introduces compatibility concerns
= JIT compilers within web browsers and within the Android Runtime (ART)
= See our paper for more details

© 2017 The MITRE Corporation. All rights reserved. Approved for Public Release; Distribution Unlimited. Case Numbers 17-0968 and 16-4772.

32

MITRE

33

Recent Android Open Source Project Changes

= Changes in AOSP master — not all are in a released Android version yet

= Ability to set SELinux domain based on app’s targetSdkVersion
— Allows phasing in new security policies applied to apps

— Based on our proposed code

— https://android-
review.googlesource.com/#/q/status:merged+project:platform/system/sepolicy+branch:master+t
opic:selinux-targetSdkVersion

"= New untrusted _v2_ app and ephemeral_app SELinux domains with stricter
security policies

— Enforces stronger protection on app internal data storage directory
— Addresses dynamic code execution by preventing execution of app data files
— https://android.googlesource.com/platform/system/sepolicy/+/master

© 2017 The MITRE Corporation. All rights reserved. Approved for Public Release; Distribution Unlimited. Case Numbers 17-0968 and 16-4772. MITRE

34

Conclusions and Potential Future Work

= Mobile platforms provide a security architecture that can leveraged and built
upon to gain confidence in and improve mobile app security

= Developer behavior can be influenced through the mobile app development
process
— Android Lint (and other tools) can help developers avoid mistakes, follow best practices
— Google Play Store (and other app stores) can enforce compliance

" Potential Future Work

— Incentives for app developers to actually use new platform security features

= e.g. Target the latest Android API level and use Network Security Configuration feature
— Tools to help app developers use new platform security features

= e.g. Android Studio feature to help developers write Network Security Configuration policies
— More Android Lint security checks

— Continue strengthening Android security policies to reduce attack surfaces, prevent exploitation
of vulnerabilities

© 2017 The MITRE Corporation. All rights reserved. Approved for Public Release; Distribution Unlimited. Case Numbers 17-0968 and 16-4772. MITRE

35

Resources for More Information

= Our technical reports
— https://www.mitre.org/publications/technical-papers/android-security-analysis-final-report

— https://github.com/mitre/vulnerable-mobile-apps/raw/master/analyzing-effectiveness-
mobile-app-vetting-tools.docx

= Our source code
— https://mitre.qgithub.io/vulnerable-mobile-apps/

= Contact information
— cnorthern@mitre.org and mpeck@mitre.org

© 2017 The MITRE Corporation. All rights reserved. Approved for Public Release; Distribution Unlimited. Case Numbers 17-0968 and 16-4772. MITRE

