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Abstract

There are plenty of other authentication approaches on the market or in
research but most of them are active. Active means that users have to ex-
plicitly do something in order to be authenticated by the system which de-
mands the users attention and time. In this work we present our continuous
mobile face authentication approach to distinguish between the owner of a
smartphone and possible attackers, just by using video sequences or camera
streams captured by the front facing camera. Our approach does not de-
mand explicit user actions. The authentication is continuous, which means
that the system does not require users to enter credentials at a certain point.
Continuous authentication is another way to prevent unauthorized access to
the mobile device and works passively in the background of the smartphone.
In this work we explain our continuous mobile face authentication approach
with our three design goals: unobtrusive, continuous and mobile. The au-
thentication system should have a reasonable authentication performance.
We develop and evaluate our approach in three steps in order to evaluate
weaknesses and do improvements in the next step. Our first implementation
is a prototypical implementation of a face recognition system which is able
to recognize faces in images and distinguish between different people. This
prototype however is not able to detect people beyond the test database
which is the major improvement in the second step of the implementation
process. Also a very important part in the second step is the weight func-
tion module which weights the importance of the face observation sample
depending on the elapsed time between two observations. Another part of
this implementation step is the recording of the face-database as source for
evaluating our approach. In the third and last step a time decay module
is introduced. This is necessary to give the confidence value a decay over
time when for a period no new face samples can be detected to avoid an al-
legedly attack. Concluding, our results indicate that our continuous mobile
face authentication is a viable approach for face authentication with a good
performance specially when detecting allegedly attackers.

viii



Chapter 1

Introduction

Nowadays nearly every person carries a smartphone and the amount of mo-
bile devices is increasing. Many people store large amounts of data onto
those devices to access the data anywhere and anytime. Some of this data
is considered to be private and therefore needs protection. Mobile device
security and privacy has become a popular issue nowadays, because mobile
devices are prone to be lost or potentially being stolen due to their small
sizes. If a smartphone without protection gets into the wrong hands, private
data as well as installed applications can easily be misuse for sending emails
or SMS, or more crucial making unwanted cash transactions with financial
applications.

PIN codes and graphical pattern are a very frequently used technique to
gain access to a locked system. Most people tend to prefer a drawn pattern
over a sequence of digits though. Those authentication techniques are easy
to use but have some serious downsides as well. Oily residues or so called
‘smudges‘ on the display surface are one side effect of touch patterns [3]. Next
to the security issues conventional authentication methods come up with,
they also effect the smartphone user experience negatively. A field study by
Harbach et al. [30] found out that the average out of 260 participants spent
around 2.9% of their smartphone interaction time just on authenticating.
The participants who used a PIN or an unlock pattern considered it as
unnecessary in 24.1% of the time which can lead to the situation where
users fully renounces the security mechanism and make the system insecure
and accessible for everyone. Another frequently used technique in nowadays
smartphones is fingerprint authentication with the built-in fingerprint sensor
which gives an easy to use and secure access to your device. With all the
positive sides the fingerprint authentication comes with, also some negative
side effects come along.

There is already a vast amount of authentication approaches on the
market or in research but most of them are explicit, such as fingerprint
authentication. Explicit means that users have to explicitly do something,

1



1. Introduction 2

such as touching the fingerprint sensor, to be authenticated on the system.
This demands user attention and time, so the user experience is negatively
affected by those points. Our approach is able to distinguish between the
owner of a smartphone and other users (possible attackers) just by using
video sequences or camera streams captured by the front facing camera.

The main motivation for our continuous mobile face authentication ap-
proach is to create an unobtrusive, continuous and mobile face authentica-
tion prototype. This means the system should not interrupt the user in any
way, like force him to enter a PIN or a password at any point. Users just
have to work on the device, and automatically remain authenticated when
they have the permission to.

We review the currently most widely used and most important mobile
state of the art and biometrical authentication approaches in chapter 2. In
chapter 3, we provide an overview of the related work with focus on contin-
uous authentication as well as face authentication approaches. We describe
building blocks which are required for our authentication approach in chap-
ter 4. In chapter 5 we explain our approach in detail with data acquisition
and preprocessing, the difference image creation, the face recognition, weight
and time decay function modules and the finally how to come up with a con-
fidence score calculation. We present the recorded face-database as source
for evaluating our approach in chapter 6. In chapter 7 we present the evalu-
ation results of our continuous mobile face authentication approach. Finally,
we conclude and provide an outlook in chapter 8.



Chapter 2

Mobile Authentication

In this chapter we survey some well known state of the art authentication
techniques for mobile devices and discuss their advantages and disadvan-
tages. We have a closer look on authentication and its core features espe-
cially with mobile devices. If users want to enter a secure room or want to
gain access to a locked system they need to verify themselves. Users need to
perform authentication so that the system knows they are allowed to enter
the room or unlock the device. Burr et al. [8] describe authentication as the
procedure of validating the identity of users or information systems. When
authentication used in security context, it needs some kind of secret. A se-
cret is something the user or system possesses and controls that is used to
authenticate the identity of the claimant. Burr split up authentication into
three types.

1. Knowledge-based: something users know Persons achieve authenti-
cation by testing their knowledge of something secret against infor-
mation obtained from the system. Like a password, an answer to a
security question, or an ID number.

2. Possession object-based: something you have. Authentication re-
quires something in the physical sense. The claimant has to proof his
identity by possessing some physical token. The prevalent examples
for this strategy are security token, ID cards or other trusted devices.

3. Biometric: something you are. The authentication is based on phys-
ical or behavioral characteristics of the user. This can be represented
by one or more attributes.

Mobile authentication mostly relies on knowledge-based strategies like pass-
words or PINs. In some cases also object-based strategies are used like using
bluetooth beacon or other devices for verification. Biometrics are less fre-
quently used in mobile authentication with the exception of the increasing
usage of built-in fingerprint sensors in smartphones (see section 2.2.1).

3



2. Mobile Authentication 4

2.1 State of the Art Mobile Authentication

With the increasing amount of smartphones, mobile device security and
privacy has become a popular issue nowadays. Mobile devices are prone to
be lost or potentially being stolen due to their small sizes. If the attacker
has access to the smartphone he has access to private data or he can easily
misuse the installed applications like online social networks as well as more
crucial financial applications [2]. According to the online report of Donna
Tapellini [67], the total number of stolen devices in the USA increased from
1.6 million in 2012 to 3.1 million in 2013, and rising. A user study of 2016 by
Harbach et al. [31] shows that 68% of a total amount of 8000 participants
protect their smartphone sufficient by PIN or security pattern. In the other
32% the data is freely available in case the phone is stolen or lost. Those
8000 participants could chose in the studies questionnaire how sensitive they
would rate the data on the smartphone on a scale from 1 to 7. Those without
any security mechanism scored an average of 3.44 and those with PIN or
security pattern scored 4.54. The reason why most participants don’t secure
their smartphone sufficiently is, that it is inconvenient to enter those secrets
and that they want to access the device functionality faster and do not want
to enter a secret before hand to access the phone. Some other participants
stated that it is hard for them to memorize the PIN or security pattern or
that they didn’t even think about security for handhelds [7].

2.1.1 PIN

PIN codes are a very frequently used technique to gain access to a locked
system. For example when drawing money from an ATM the PIN is used
as second level of security additional to the credit card. Nevertheless PINs
often are the only level of security like on smartphone lock screens. Users
gain access to personal data just by entering a 4 digit number. When using
conventional PINs the user can choose digits between 0 and 9 which give a
total amount of 10000 possibilities (104) which could be brute forced.

2.1.2 Graphical Pattern

Some people tend to prefer a drawn pattern over a sequence of digits. In 2008
Android introduced its optional pattern lock system, which requires a finger
swipe over a particular sequence of dots to unlock the smartphone (see in
figure 2.1). Users can decide between different amounts of connectible dots.
Although being more error prone and slower than conventional PINs, users
prefer to draw a pattern on the screen due its ease and playful usage [15].
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2.1.3 Attacks

PIN and graphical pattern authentication techniques are easy to use but
have some serious downsides. Oily residues or so called ‘smudges‘ (see in
figure 2.1) on the display surface are one side effect of touch patterns which
are frequently used to unlock the smartphone. Aviv et al. [3] states that
those smudge attacks are a threat for three reasons:

• The draw residual is surprisingly long visible.

• Smudges are hard to delete through wiping or pocketing the device.

• The oily residual of the pattern is easy to collect and analyze.

(a) (b)

Figure 2.1: (a) A drawn sequence of dots. (b) the oily residual ‘smudge‘ as
result [15].

The three reasons which Aviv et al. state are demonstrated in their experi-
ments. They unlocked devices by exposing the graphical pattern only with
the oily leftovers on the device screen. These leftovers can be easily captured
by a camera. The pattern can be even more visible for the human eye by us-
ing a commercial photo editing package for lighting and color adjustments.
So if a smartphone will be stolen with authentication mechanism like this,
it is pretty likely that the attacker is able to access the private data or even
passwords for social media or banking just by using a commercial camera.

Another security risk when using PIN or unlock pattern is a so called
‘shoulder-surfing‘ attack. The attacker can obtain the secret by direct ob-
servation or by recording how users authenticate. This is a known risk of
special concern when authenticating in public places [42].

2.1.4 Usability

Next to the security issues conventional authentication methods come up
with, they also effect the smartphone user experience negatively. A field
study by Harbach et al. [30] found out the average out of 260 participants
spent around 2.9% of their smartphone interaction time just on authenti-
cating. The participants who used a PIN or an unlock pattern considered it
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as unnecessary in 24.1% of the time which can lead to the situation where
users fully renounces the security mechanism and make the system insecure.
Users do not want to spend time entering a password or PIN or security pat-
tern to access their smartphone [69]. Nevertheless users tend to use PINs,
passwords or unlock pattern. The reason therefor is that those are the only
authentication methods they are aware of unfortunately. Most of the PINs
are chosen pretty weak. This is because users have to remember many differ-
ent passwords and PINs. They choose easily guessable passwords and reuse
those out of self-defense, because this is the only way to remember a vast
amount secrets which are needed for the huge amount of different accounts
they use [13]. Most authentication systems are evaluated against two prop-
erties: security and usability [74]. The system often has to make a tradeoff
between those two properties. Users will either choose a easy to remember
password which is insecure or they will choose a complex password which
they cannot remember properly and have to write it down. Hence, the top
reason why users disable their security mechanism to enter the phone is
inconvenience and the negative effect on usability [20, 30, 31].

2.2 Biometric Authentication

Beside the already mentioned state of the art authentication techniques for
mobile devices (see section 2.1) biometrics can be used for verification as
well. Biometric authentication can be split in two categories: behavioral and
physiological. Physiological authentication techniques often requires addi-
tional sensors like a fingerprint sensor the to acquire the wanted biometric.
Others can use e.g. the camera sensor which can be very battery draining
when used inefficient. The usage of behavioral biometrics however can be
obtained using existing parts such as the smartphone keyboard or display,
when using typing pattern for example. The most outstanding advantage
of behavioral biometrics is that they do not afford the users attention and
time. That is why behavioral techniques make the authentication process
attractive to users due to their unobtrusive usage [5]. Biometric recogni-
tion algorithms improve more and more nowadays with the sensors newer
smartphones come up with by default and the improvement of processing
power it is easy to use physiological biometrics like the face or the voice
as authentication feature [69]. Figure 2.2 from [2] gives an overview about
the most common biometric authentication techniques. Some more detailed
explanations of some state of the art biometric authentication techniques
are stated in chapter 3. To encounter weakly chosen passwords biometrical
authentication methods might come pretty handy. A study by De Luca and
Lindqvist [15] states that an average smartphone user unlocks the phone
about 50 times a day. Another user study by Hintze et al. [33] came up with
a total of amount of 60 smartphone interactions average per day where in
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Figure 2.2: Biometric approaches to authenticate users (adopted from [2]).

45% (27 interactions) the phone was unlocked with an average session length
of 307 seconds (Other interactions are not security sensitive e.g. switching
to another song on media player or checking the time). That means that the
biggest challenge beside security is creating and designing a security mech-
anism which is easy and fast to use or most of the users will disable it. A
metric which is used the measure the time a user needs to provide a sample
for authentication is called ‘user action time‘. This metric neither includes
processing time spent verifying the quality of the sample nor the authenti-
cation and server response time. It only measures the time the users need
for e.g. taking photos for face authentication. The user study of Trevin et
al. [69] states that voice is the fastest with a median user action time of 5.15
seconds, followed by face authentication with 5.55 seconds. Password has the
highest user action time with 7.46 seconds when considering only those three
authentication methods. Hence, biometric approaches give a convenient and
unobtrusive user experience which passwords and PINs are not able to give.
They give the user the opportunity to enter the system fast and in an easy
way.

"‘[...]A key selling point of biometric authentication is that it
allows users to move away from passwords, both for use in au-
thenticating to third parties, and for unlocking their own physical
device. This eliminates the requirement to enter passwords, and
avoids the inconvenience of forgetting passwords.[...]"’ (Greig Paul
2016, IEDs on the Road to Fingerprint Authentication : Biomet-
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rics have vulnerabilities that PINs and passwords don’t) [56]

2.2.1 Fingerprint Authentication

Fingerprint authentication refers to the automated method of verifying users
by their individual fingerprints. Mobile fingerprint authentication uses a
built-in fingerprint sensor to access the smartphone which gives an easy to
use and more secure access to your device. A user study on smartphone
security and usage by Breitinger et al. [7] asked 548 participants which au-
thentication mechanism they would prefer. Out of those which are willing to
use biometrical authentication techniques, about 87% voted for fingerprint.
A usability study of Karthikeyan et al. [40] gave 40 participants tasks to
find out if they would prefer fingerprint or PIN as smartphone unlocking
method. Those tasks included setting up the technique, unlock the smart-
phone, download an application from the store and change the pattern / the
fingerprint. The analysis shows that fingerprint takes much more time for
setting up. The average setup time of the PIN was about 24 seconds. Fin-
gerprint setup phase in comparison took an average participant about 46
seconds. The attendees however preferred the fingerprint technique. Only
20% out of 40 participants would like to use a PIN over a single tap on
the fingerprint-sensor to unlock the smartphone. Another 30% do not mind
which technique they use and half of the tested people like the fingerprint
method more.

2.2.2 Voice Authentication

Voice authentication is another biometric method where users are identi-
fied based on the way and pattern of speaking [2]. The most outstanding
advantage when using voice features as authentication method is that the
authentication process can be done remotely [36]. The claimant is able to
get access to a locked room or system via speaking over the telephone sys-
tem. The crucial part when using this kind of authentication is that other
people are able to hear your spoken voice and note down for example a spo-
ken PIN or any other personal data. To protect voice authentication Ji et
al. [36] created a system architecture which allows the claimant to whisper
the authentication term into the device microphone. To improve the speech
recognition performance a high-pass filter and an acoustic model adaption
algorithm was added to the voice. To add another layer of security Ji et al.
introduced a one time password (OTP) which is composed of several digits.
The user is only verified as authorized candidate when the system recog-
nizes his voice as trusted voice and when he speaks the OTP correctly. With
additional improving steps like adding a high-pass filter, the experimental
results showed that voice authentication can replace current identification
methods such as passwords and PINs. The additional security level (OTP)
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makes this approach more secure because to the two-factor authentication.

2.2.3 Gait Authentication

Gait recognition is a biometric method where users get recognized by the
way they walk [17]. This is a continuous approach to verify a user in an
unobtrusive way. The three main approaches in biometric gait recognition
are: machine vision based, floor sensor based and wearable sensor based gait
recognition. The machine vision based version of gait recognition uses com-
puter vision and basically needs several cameras. This cameras track suitable
optics on the person to acquire the gait data [45, 51]. Some techniques like
background segmentation are used to extract the features of the tracked
person. With this approach non-coorperative persons can be detected at a
distance in real-world changing environmental conditions.

In the floor sensor based approach the sensors are placed on mats or on
other things in the floor. The pressure-measuring mat obtain the footprints.
Based on the direction, the position and the distance of the footprints to
each other the system is able to distinguish between different persons [48].

Wearable sensor based gait recognition approach is based on wearing mo-
tion recording sensors on different body parts for example a smartphone with
the required sensors. The different features can be acceleration (measured
by accelerometers), rotation and number of degrees per second of rotation
(measured by gyroscope sensors), force applied when walking (measured by
force sensors) and some others [17]. Due to the fact that most of the given
sensors are already built-in in smartphones means that modern smartphones
are a well suited base for an unobtrusive continuous authentication approach
based on biometric gait [17, 34].

2.2.4 Face Authentication

Another biometrics for mobile authentication would be face recognition (see
section 4.2). The user is able to enter the room or unlock a system using his
face as ‘key‘. The verification of the face is done by images recorded by e.g.
the built-in camera of a smartphone [18, 66]. The face authentication pro-
cess is split up in three main steps [55]. The first step is to acquire faces of
the claimant out of images or video sequences. In the second step features of
the face gets extracted. Finally these extracted features are passed on to the
classifier to distinguish between different users. An additional step before
the feature extraction which is not explicitly stated in the paper of Patel et
al. [55] is preprocessing of the image. This could consists of the following
steps: Detecting the face in the image, crop the face part, make the image
gray scale, apply histogram equalization for better contrast and resize the
image to reduce the amount of features [1, 4, 21]. However some challenges
have to be overcome before successfully using faces as authentication bio-
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metric. Faces may have very poor illumination, different pose variations or
missing facial parts which the system has to deal with [55], which maybe
lead to unsuccessful authentication attempts.

2.2.5 Drawbacks of Biometric Authentication

Beside the easy and convenient usage of biometric authentication, the bio-
metrics do have some security issues as well. The permanent and non-
revocable characteristic of a biometric, such as fingerprint means that once
it is captured and stored it will be lifelong valid. We leave fingerprints behind
on almost every surface we touch [56]. This leaves the concern that people
can not even prevent the fact that some strangers might have their iden-
tity stolen with a simple glass bottle they thrown away a few minutes ago.
Or they have most likely an image of our face just by goggling our name.
The trade-off between convenient usage and security has to be considered
when biometrics are used as authentication mechanism. A good extension
could be that applications with high security needs would get an additional
security technique. This is called a two-factor authentication which could
be an additional secret (PIN, password or any other secret) which has to
be entered before accessing the application [59]. This could encounter the
stated security issue of fingerprints but let the user enjoy the easy access
to the smartphone. Only when using applications with high security needs
the two-factor authentication comes in place which might introduce some
usability issue and affect the positive user experience.

Another downside of biometric methods is that errors can appear which
are not able to happen when we use PINs or passwords. The main two
errors which may occur are Failure to Enroll (FTE) and Failure to Acquire
(FTA) [69]. An Failure to Enroll error occurs when the participant is not
able to use the biometric system. An example when using face authentication
could be that the face verification engine is not able detect a face in the
taken image. Failure to Acquire (FTA) errors are stated as follows. The
participant is not able to provide a sample of sufficient quality. When using
face authentication a given threshold of certainty needs to be reached to
meet a predefined quality criteria.

A big concern when using biometrics for authentication is a so called
spoof attack where the attacker imitates the users biometric. Spoof attacks
like on faces authentication systems can be launched rather easy via printed
photos, video replays or 3D masks [53]. Faces are easier to obtain in contrast
to other biometrics like fingerprint or gait. A video or an image found online
is enough for an attacker to commit a spoof attack on the face authentication
system [54]. Figure 2.3 from [54] shows an attempt where an attacker uses a
online video resource to unlock the smartphone. The biggest concern when
using biometrics is that users can not change who they are. It is impossible
to change your face, your iris pattern or your fingerprint. Which means
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Figure 2.3: Demonstration of a video replay attack where an image sequence
is collected via smartphone from a notebook screen (the spoof medium) from
a video found online [54].

if someone is able to duplicate, steal or replace the users biometric it is
possible for the attacker to authenticate to a biometric authentication system
pretending to be someone else [11].

2.2.6 Summary

The most outstanding advantage of biometrics is that most can be used in an
unobtrusive way in comparison to PIN and passwords, which always requires
the users attention. Accessing a system or unlocking the smartphone does
not require users to remember a secret which needs to be entered to verify
the identity. A simple tap on the fingerprint sensor or a look in the camera is
enough to access the system. Nevertheless, some concerns are given. When
attackers are able to obtain some of the users biometric it is possible for
them to access the biometric authentication system. The biggest concern
however is that most biometrics are static and do not change over time.
Which means users cannot change who they are, which is a problem once
the biometric is obtained by an attacker. When users are able to decide
if they use either biometrics or passwords as authentication technique the
tradeoff between security and convenience has to be considered. Users have
to choose what is more important to them and decide based on this.



Chapter 3

Related Work

This chapter gives an overview of state of the art research that is related
to our continuous mobile authentication approach. We discuss similarities,
advantages, disadvantages and core features of the given related work and
describe how those approaches work.

3.1 Active Versus Passive Authentication

Authentication can be either active or passive which means if the user has
to make active steps to verify himself or not [2].
Active authentication requires the user to enter some valid information to
the device. Active authentication, like entering a password or PIN number,
is mostly used as so called ‘entry-point authentication‘, which requires the
users attention and dedicated user time. Entry-point authentication means
that users have to enter a secret correctly to pass the entry-point to the
device, which is a certain drawback in usability. A drastic shortcoming of
those entry-point authentication systems might be that the claimant only
have to authenticate himself at one certain time. Once the allegedly attacker
passed this point, he is able to fully access the smartphone, and without any
additional security mechanisms he is possibly able to change the password of
the entry-point. If this happens the user is not able to enter the enter-point
by himself and is locked out of his own system.
Passive authentication, also known as implicit, progressive or continuous
authentication, does not require users to enter credentials at a certain point.
Continuous authentication offers another way to prevent unauthorized access
to the smartphone and works passively and nonintrusive in the background
of the smartphone [24].

In most cases passive authentication is divided into two phases [2]. The
enrollment phase is a learning process. Users are working on the smartphone
as usual, the system though records suitable features for a period of time.
If for example touchscreen analysis is used, the recorded features may in-
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clude touch speed, movement or X/Y-coordinates of the touches. The system
learns characteristics of the user behavior by performing statistical analysis
or using machine learning on the recorded data and creates a user model.
The second, continuous authentication phase takes into account after the
creation of the user model (enrollment). After the successful active login of
the user, the system compares the current behavior with the learned user
model, to recognize the user or a possible threat.

A continuous authentication approach should be light-weight, nonintru-
sive and as the name already indicates, continuous [2]. This means the sys-
tem should not interrupt users in any way, like force them to enter a PIN
or a password at any point, and the approach should use low computational
power to save battery especially on mobile devices.

3.2 Continuous Biometric Authentication for
Mobile and Desktop

Before discussing continuous face authentication we highlight other biomet-
rics that can be used continuously or have other relevance to our approach.

When we are looking at continuous authentication techniques most of
the time behavioral biometrics are used. Continuous techniques have the ad-
vantage that the verification of the user is done over and over. In entry-point
authentication systems the claimant only has to verify himself once. Once
access is granted no further verification is needed to use the system and get
access to sensitive data. This could happen when users leave the worksta-
tion for a short break to get for example some documents from the printer.
Anyone can use the computer in the meantime and pretend to be the autho-
rized user. The following sections will give examples of biometrics which are
good examples for biometrics frequently used in a continuous manner. The
highlighted biometrics are keystroke recognition, touch behavior recognition
and gait recognition. It will be discussed how those approaches acquire data,
preprocess data and use this data for user classification. Figure 3.1 gives an
overview of the general modules used in a biometric authentication system.

Data 

Preprocess

-ing 

Data 
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extraction 

Classifi-
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feature 
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Figure 3.1: General overview of a biometric authentication system. Specific
biometrics can have additional modules.
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3.2.1 Keystroke Pattern Authentication

Keystroke biometric systems are identifying people by their typing style,
which is unique in the hold time of keys or the time between keystrokes.
Those typing characteristics are believed to be unique for different users and
hard to duplicate [6]. In the following section classifiers like Support Vector
Machines (SVM) and k-nearest-neighbors (KNN) are mentioned which will
be explained in detail later on in section 4.2.1 and section 4.2.2.

Keystroke recognition is an inexpensive method for user authentication.
The only requirements are a desktop computer or a notebook and a key-
board. Most approaches measure the times between typed keys or times
between a group of typed keys. The unobtrusive technique is very handy for
users because this get rid of the active verification process. One considera-
tion is low volume computer input (drinking coffee, only using one hand for
a short time window), which will need a predefined threshold. This thresh-
old defines the quantity of data required for reasonable authentication if the
input is below the threshold the user access is no longer granted [47]. Some
approaches have defined some special cases when the system deals with long
text inputs [68]. There are infrequently used keys which need reasonable
values and computability for all feature measurements as well as the fre-
quently used ones. When the typing frequency of a specific key is below a
given threshold the mean value is calculated of the weighted average sum of
the key in question and the average sum of an appropriate fallback group
of keys (which is defined before hand). Other approaches use a sequence of
typed keys so called n-graphs and the duration when a key is depressed [28,
78]. This is used to calculate the elapsed time between the depression of the
first and last key of a sequence which is called ‘duration of a n-graph‘ (this
is the combination of the latencies between keystrokes and their durations).
All this times and latencies can be used in different ways as features for
further recognition purpose.

In some keystroke recognition systems it is necessary to remove out-
liers because users can have a long pause between key presses, for multiple
reasons, which lead to long transition times that skew the feature measure-
ment [47, 68]. Therefor every duration or transition time which is longer
than a predefined threshold will be removed. Values are standardized into a
specific range (e.g. between 0-1 by clamping the measurements at plus and
minus two standard deviations of all samples from all participants). This
standardizing is used to give each sample roughly the same weight. Other
approaches will use only sequence of typed keys which are common in two
or more typing samples, uncommon key sequences will be dropped out [28].

To extract features from keystroke data some approaches calculate the
mean and standard deviations of key press durations and digraph transition
times (e.g. between letters and non-letters or groups thereof) [47, 68]. Addi-
tional features could be the percentage of special keys usage. This percentage
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features are designed to capture the user’s preference of certain keys or key
groups. A typing sample can also be represented by its n-graphs [28] (se-
quence of typed keys) together with the duration of each n-graph. The typing
samples can be represented in digraphs, trigraphs and so on which will be
used as features than. The digraphs for the word ‘authentication‘ could be
for example: (��, �ℎ, ��, ��, ��, ��, ��) and the trigraphs: (���, ℎ��, ���, ���). If
the typed text is sufficiently long the same n-graph may occur more than
once. In such cases the n-graph is reported only once to the system and the
mean duration of its occurrences is used for later on classification.

For authenticating keystroke pattern the biometric needs to be trans-
formed into a feature vector [47, 68]. Some of this feature vectors will also
be generated earlier in the enrollment phase (template feature vectors). In
the enrollment phase this template feature vectors will be generated and
labeled. To get a two-class problem {����, �ℎ����} out of a multi-class prob-
lem {������1, ������2, ������3, ...} the feature vector gets transformed into
feature-difference space by calculating vector distances between pairs of sam-
ples. Vector distances between sample pairs of the same person (within-
person / verified user) and vector distances between pairs of samples of dif-
ferent persons (between-person / threat) are calculated, labeled and saved
in a training dataset. A similar approach is done in our continuous mobile
face authentication system (see section 5.3). In the authentication process a
user’s keystroke sample is converted again into a feature vector. Later on the
difference vector of this feature vector and earlier obtained template feature
vector gets calculated and used for authentication. Classifiers like KNN can
be used to classify the difference feature vector of the current sample by com-
paring it with those in the training dataset. The observed difference feature
vector gets assigned to one of the two classes {����, �ℎ����} corresponding
to the template difference vector with the smallest distance to.

Some approaches decide whether the current sample is from a verified
user or not each time a new sample gets observed. The sample will be classi-
fied and a value will be calculated. This value (confidence score) which is in
a nutshell, the probability of how certain the current user is a verified user,
will be used to accept or reject the current user and bring the system into
attack-state when rejected [78]. The new confidence score gets calculated
by the current observation and the previous confidence score, both will be
weighted with a specific weight function. A similar approach is done in our
continuous mobile face authentication system (see section 5.5). If the confi-
dence score drops below a certain predefined threshold and the system goes
into the attack-state additional steps to verify the identity may be done.
Other key stroke authentication systems use some different approaches to
deal with the continuous aspect [47, 68]. Keystroke authentication systems
have to deal with possible interruptions where the users leave the desk and
do not provide input. A fixed time window can be used which is used as
re-authentication step after a pause where the system collects and analyzes
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the typing pattern and decide based on this analysis if the user is verified
or a threat for the system. The length of this time window is depending on
a tradeoff between accuracy and reaction time. If the value at the end of
the time window is below a certain threshold the user will be logged out. If
the window length is chosen long the accuracy will increase but the system
need longer time to react. If the window length is chosen short the accuracy
will decrease but the system will react faster which influences the usability
positive.

3.2.2 Touch Analytics Authentication

Touch analytics on smartphones is nearly the same as keystroke detection
on Desktops. In touch analytics the swipe and type pattern on the display
are measured and users get later on identified by the way they interact with
the smartphone touchscreen. In the following section classifiers like SVM and
KNN are mentioned which will be explained in detail later on in section 4.2.1
and section 4.2.2.

To gather the needed touch gestures the users raw touch data needs
to be recorded. For each present finger the x and y coordinates as well as
the pressure on the screen and the area of screen covered by the finger is
recorded and could be used for generating features later on [24, 43]. This
raw touch data is in some cases provided by the standard system API (e.g.
Android system) [24] or from collection software which obtains data from
the operating system [22]. Other mobile approaches use the type pattern
on a software keyboard of the smartphone to gather touch data plus the
smartphone orientation, torque of the smartphone, relative position of the
smartphone and the timestamps of key press events. The additional data gets
provided by the sensors in the smartphone like accelerometer, gyroscope and
the software keyboard [25]. To ensure that only motion data related to the
typing behavior is recorded time constraints need to be considered when
signals are preprocessed [25]. The goal is to calculate a data point of all
values during a certain time period � once the user has started typing. Every
� seconds a data point gets calculated if the user does not introduce some
typing data during a time period ����� the system assumes that the user
stopped the typing task. When �1 is followed by a ����� which means that
the user stopped typing for the predefined period ����� all sensor data after
�1 can be discarded. This reduces the unnecessary data and decrease the
computation effort. Additional information like the user’s dominant hand or
if users use both hands or only one hand can be used as feature as well. This
information can also be obtained by the touch coordinates on the screen [61].

An important step in touch analytic approaches is data normalization
and standardization to generate touch feature vectors with the same size [24,
25]. This is important because the speed of the swipe gesture or the taps
may vary. In addition artifacts or constant values such as the gravitational
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force on earth 9.81�/�2 can be removed to reduce unnecessary data [24].
Some approaches extract up to 30 behavioral touch features that can

be extracted from raw touchscreen data (e.g., finger up, finger down, finger
move and multitouch) and additional features like event timings and device
orientation [24, 77]. The first step of feature-extraction is to split up the
touch observation data into individual strokes. A stroke is a sequence of
touch data that begins with touching the screen and ends with lifting the
finger. One stroke � is encoded as a sequence of vectors and can hold following
data: start and stop location of the stroke, time stamp, the pressure on the
screen, the area occluded by the finger, the orientation of the finger and
the orientation of the phone [24]. Between two strokes �� and ��+1 no
input is recorded on the touchscreen. Examples for extracted features are
e.g. ‘mid-stroke area covered‘, ‘average direction‘ or ‘stroke duration‘. Other
approaches uses single taps and the corresponding location and duration as
features [22]. All this features are later on used for classifying users.

The classifiers work on individual single strokes. For a more robust classi-
fication result multiple strokes can be combined together in an earlier stage.
The number of strokes used for classification is very important and intro-
duces a trade off between robustness of the classification and the time needed
to detect a threat. During the authentication phase, the system continuously
tracks all strokes and the classifier estimates if they were made by the le-
gitimate user or by an attacker. In some approaches a predefined amount
of consecutive negative classification results (classifier estimate an attacker)
has to be reached to bring the system into attack state and back to a initial
entry-point based authentication method [24, 43]. When multiple consecu-
tive negative classifications are allowed some kind of counter is needed to
keep track of the amount of negative classifications. Approaches which rely
on taps rather than on strokes need some kind of sliding window. The sliding
window defines the amount of taps needed for authentication. Only using
single taps would not work in this kind of approach because of the huge
similarity between taps of different users. This sliding window contains a
predefined amount of ‘input units‘ (a combination of multiple taps). If none
of the input units within the sliding window is from an authorized user the
system will lock out the user [22]. The size of the sliding window is again
a trade off between robustness of the classification and the time needed to
detect a threat.

3.2.3 Gait Authentication

In the following section classifiers like SVM, models like hidden Markov
model (HMM) as well as preprocessing techniques like principal component
analysis (PCA) are mentioned which will be explained in detail later on in
section 4.2.1, section 4.3 and section 4.4. Another biometric which can be
used in the continuous authentication domain is gait recognition. Simply
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attaching a smartphone to a users pocket is enough to collect the time
discrete combination of acceleration values of the built-in three dimensional
accelerometer sensor during walking [17, 34]. The gait recognition approach
can be adapted to a desktop version by analyzing the gait pattern with
computer vision using a sequence of images captured with cameras [37, 45,
51]. The assumption here is that walking is a cyclic motion which repeats
at a stable frequency. Poses in human walking cycles are the same for each
person e.g. the arms and legs move forward and backward in a similar way
among normal people. Differences exists in the phase of poses during the
walking cycle e.g. the extend of arms or the shape of the torso which can
become features for gait authentication [45]. Classification can be done on
those features later on.

Visual gait recognition approaches where persons’ contours are used for
recognition rely on normalized sizes and alignment. Therefor the extracted
images are size normalized where the silhouette has to fit to a fixed height
and need to be centered in the image [45]. Also some filters can be applied to
reduce noise. Some systems use an erosion filter to reduce noise and apply a
weighted low pass filter in addition to trace the left and right body contours
since only the contour of the person is needed here [37]. A gait energy image
(GEI) which is used in [45] represents a human motion cycle in a single
image which leads to the limitation of training templates since every person
rely on only a few or just one GEI. To overcome those limitations a series
of new GEI can be generated by analyzing the human silhouette distortion
(different shoes, different clothes or different floor surfaces can affect the sil-
houette). The new GEI templates are generated by determine the range of
distortion area and use another part of the template to fit into the distortion
area. By repeating this step a new series of template GEIs is generated. PCA
can be used for extracting features for recognition. Where most computer
vision based gait recognition approaches on desktop computers can provide
proper time-stamps to their observations, the raw gait signals which are ac-
quired by low-quality accelerometers of the smartphone will struggle here,
due to the inaccurate sampling rates of the mobile sensors and the huge oc-
currence of noise. To encounter the sampling rate problem some approaches
use linear interpolation between the samples to ensure correct values at spe-
cific observation times. In addition multi-level wavelet decomposition to set
explicit coefficients to 0 [34] or weighted moving average filters [17] are used
to get rid of noise. Gait cycles can have a different length because the user
(the carrier of the smartphone) can walk at different speed levels. To ensure
that every gait cycle which is extracted from the repetitive signal has the
same length the feature vectors need to be normalized.

Some gait recognition approaches extract multiple outer contours of peo-
ple from an image sequence and use those contours as multiple image fea-
tures. In this special approach the width of the outer contour of the person
is used as image feature [37]. During the gait cycle it is possible to identify
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specific stances that are generic, in the sense that every person transits be-
tween these successive stances. Since every person has some different poses
on this stances it is possible to distinguish people based on those. In addition
a ‘Markovian‘ dependence from one stance to another can be used, which
means that the current stance pose is dependent on the previous pose, since
structural information alone may not lead to good recognition rate [37]. Oth-
ers take those silhouette sequences and add them together to one average
silhouette image [45]. The silhouettes are extracted by background subtrac-
tion to detect the object in motion in an image. In the second approach the
occurrence frequency of a specific body part is extracted based on the pixel
intensity at this point, therefore this average silhouette image is called gait
energy image (GEI) which is used as single image feature vector for recogni-
tion. Both GEI and contour image sequence approaches are mostly used on
static desktop systems with only one person at a time. Mobile gait recogni-
tion approaches however work a bit different. Due to the fact that walking
is a cyclic activity the extracted features should held information according
to a whole gait cycles instead of a fixed time interval [34]. A gait cycle is the
time interval between two successive occurrences of the same event when
walking, which is shown in figure 3.2. At the specific time the heel touches

Figure 3.2: One walking cycle where the last image shows the start of a
new consecutive step [35].

the ground (frame ‘a‘ and ‘g‘ on Figure 3.2) where the association between
ground reaction force and inertial force together make a negative peak on
the Z-axis (axis who is pointing to the floor) can be considered as marking
point to distinguish separated gait cycles [35]. This information can be used
to seperate the repetitive signal into individual gait cycles which is necessary
for later on recognition.

The gait energy image approach [45] uses the obtained gait energy im-
age as feature for recognition. By calculating the feature distance between
the labeled template GEIs and the query GEI the system can obtain that
the template with the smallest distance is the best match and therefore the
wanted person. To archive a proper recognition the approach where HMM
is used for recognition based on stance transitions a HMM for each person
has to be trained with several gait cycles as features [37, 49]. The hid-
den Markov models are generated by using the width vector derived from
the features of several gait cycles of the person and recognition is basically
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performed on the transitions between stances rather on the stances itself.
The actual recognition is performed by evaluating the probability that a
given observation sequence was generated by a HMM model from the model
database. If so the user corresponding to the model from the database is
the user corresponding to the given input observation sequence. Since time-
information is available in the the gait signal of the mobile approach it is
possible to transform the sensor signal from the frequency domain to the
time domain to obtain the best features of both domains. Some features
subset selection algorithms are applied to obtain the best features based on
the accuracy criterion of the learning algorithm which are later on used for
classification [35]. This approach uses SVM for classification using features
from time and features from frequency domain. The approach of Nickel et.
al. [50] which uses the authentication module represented in another paper
by Witte and Nickel [76] classifies as follows. The system collects accelerom-
eter data during the lock screen phase of the Android smartphone and save
those into a database. When users want to unlock their Android smartphone
the data of the last 30 seconds is used to extract gait cycles and use those
to verify the user. The current extracted gait cycles will be compared with
saved reference data. Reference data will be generated when a new user ac-
count gets created. If the authentication result is true the smartphone will
be unlocked if the results is false the user has the chance to verify by entering
the PIN or unlock pattern.

3.3 Continuous Face Authentication for Mobile
and Desktop

Facial images can be captured by many different camera sensors. Some ap-
proaches work passively without forcing the user to interact with the system
actively. This kind of approaches can be used e.g. for continuous authenti-
cation which is described in detail in this section. The progress in real time
face detection algorithms allows face authentication systems not only on
desktop PCs even low-end mobile devices with built-in cameras can use face
authentication systems. Faces are usually used as physiological biometric
in active entry-point verification systems [18, 66] but the face can be used
as continuous authentication technique as well [55]. In continuous face au-
thentication approaches the system captures samples continuously using a
continuous real-time image stream or prerecorded image sequences rather
than just a few static images like it is done in active authentication systems.
Usual face authentication systems use steps like face data recording, image
preprocessing, feature extraction and classification / authentication. Those
steps will be discussed in detail in the following sections. In the following
section classifiers like SVM, Viola and Jones, models like HMM as well as
preprocessing techniques like PCA are mentioned which will be explained in
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detail later on in section 4.2.1, section 4.1.2, section 4.3 and section 4.4.

3.3.1 Data Acquisition

In some approaches the built-in webcam is used to acquire a video stream,
the memory in the computer is used to save the images in a video frame
buffer for further processing and calculation purpose [70]. Both mobile de-
vices [1, 14, 21, 29] and desktop PCs [4, 41, 79] can use the built-in front
camera or webcam to acquire 2D data. Some other approaches using external
RGB-D cameras like the Microsoft Kinect sensor to acquire 3D images with
depth information since 3D outperform 2D in many aspects [63], however
3D cameras are rarely shipped with off-the-shelf mobile devices. Images with
3D information are more robust against different poses, 3D images can be
captured in a wide range of lighting conditions and 3D data allows a better
classification between foreground and background objects. RGB-D data con-
tains next to the RGB color values also depth information. This information
can be acquired by emitting an infrared pattern which is captured by an in-
frared camera [32]. The major drawback of 3D face authentication is the high
computational cost. Acquiring and processing 2D data however is way faster
than 3D data. When we differentiate between mobile and desktop authenti-
cation one important core aspect is battery. With high computational costs
the device has to calculate a lot which requires a vast amount of battery on
mobile devices. This is less of an issue on desktop systems. Also observation
times differentiate between desktop and mobile approaches. Whilst in desk-
top applications the camera sensor can nearly observe the whole time, the
built in front camera of mobile devices needs some downtime as well [14].
Otherwise the battery of the smartphone would be discharged quickly and
nobody would use this kind of authentication mechanism.

3.3.2 Face Detection

The face detection part of the continuous face authentication system takes
an image as input and determine whether or not there are any faces in it. If
so, the output of this system part is the image location and extent of each
detected face. A detailed explanation on how face detection works will be
given in section 4.1. Base for most face detection in real time applications
is Viola and Jones’s [72] ground-breaking algorithm which uses Adaboost,
cascade structures and simple feature extraction. Each frame is searched for
faces using Viola and Jones’s algorithm. When using continuous authenti-
cation each frame or a subset frames of the video or real-time image stream
is extracted. To get good results the face detection should work on faces
with in-plane and out-of-plane head rotations as shown in figure 3.3. Viola
and Jones’s algorithm is robust and give good detection results against this
rotations. To improve the face detection success rate some approaches uses
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(a) (b)

Figure 3.3: (a) in-plane rotation (b) out-of-plane rotation

additional features like eye, mouth or nose detection [4, 21, 79]. If one or
more of those features are found inside the face detection rectangle it is
more likely to be a face. If those landmarks are close to the border or on the
outside of the face bounding box, the samples will be marked as non-faces.
The face detection algorithm should perform fast without long computa-
tion time, therefore errors may occur during face detection. Those regions
marked as faces which are actually no faces (false positive samples) are the
result of wrong face detections and the tradeoff between accuracy and com-
putation time. In mobile applications where the background can possibly
change every few frames it is more likely that the face detector finds an
object somewhere in the background which will be mistakenly detected as
face. In static desktop environments however the background varies not as
much each session and the face detection algorithm and its parameters can
be chosen based on this specific setting. Static desktop environments can be
parametrized better for the specific setting which is impossible for mobile
and laptop environments. To minimize the false positive detections some
approaches require that the face has a minimum size [21]. When using the
front camera of a smartphone the minimum height and width of the detected
face has to be for example a third of the entire image to be marked as valid
face. The minimum face size is depending on the smartphones camera and
the detection system. This simple step can be implemented to prevent false
positive matches without high computational costs.

3.3.3 Image Preprocessing

The image preprocessing step in continuous face authentication systems pre-
pares single images or a sequence of images for later on recognition and
classification. This step should reduce the computational effort and get rid
of unnecessary image information. Most of the face recognition approaches
work with gray scale images. This is done to reduce the information of the
image and get faster calculation results from the face recognition system [38].
Indeed, color may be beneficial in some applications but the additional un-
necessary information would increase the amount of training data needed



3. Related Work 23

to achieve good performance. Therefore all the samples get converted from
RGB to gray scale. Another step to reduce unnecessary information is to
scale all the faces to a fixed size. When we assume that we have an image
of 64 x 64 pixel the amount of pixel features in the image is reduced to
4096. Beside feature reduction, rescaling of the face sample has the effect
that all the faces have a normalized size which makes it easier for the face
recognition system due to the fact that most classification models perform
better on a uniform amount of features [27]. In face recognition systems the
detection and recognition performance is strongly affected by a variation
of illumination. Some approaches apply histogram equalization to reduce
the variations of illumination (see in figure 3.4) [1, 4, 21]. Dark images will
be brighten up and bright images will be dimmed. Another variation to

(a) (b)

Figure 3.4: (a) Image before histogram equalization. (b) Image after his-
togram equalization.

encounter illumination variations is photometric normalization [79]. Homo-
morphic filtering is used to weaken the effects of shadows and specularity
on the face by simultaneously normalize the brightness across an image and
increase its contrast [16, 46]. The resulting face images are then used for
feature extraction.

3.3.4 Feature Extraction and Face Recognition

Feature extraction is animportant step where values (features) are derived
from an initial set of measured data. Feature extraction will give values or
vectors of values which can be later on used for recognition and classifica-
tion purpose. Those features can be e.g. pixels intensity values obtained from
the rescaled, gray scale image or other information extracted from those pix-
els. In addition to the intensity values of each gray scale pixel other more
specific areas inside the face bounding box can be used. For example the
intensity values within the bounding boxes of the mouth, the nose and both
eyes can form a feature vector with a specific size. The mentioned bounding
boxes need to be resized before hand to get normalized vectors across each
face sample [21]. Some approaches divide the image into blocks, extract his-
tograms of each block and concatenate the histogram values into a feature
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vector of a fixed size. For example: an image is divided into 9 blocks and
the histograms have 59 bins each which leads to a vector with the size of
531 (59 × 9) [29]. The face identity is verified by computing the histogram
intersection distance between the current face sample and a template face
of the database. If the distance is below a certain threshold the face will
be rejected, or reported as positive match otherwise [29]. Another way to
distinguish between different faces is using measurements and distances be-
tween facial features in the human face. Those measurements can consist
of the size of eyes, nose, mouth, and eyebrows and their relative positions,
the distance between the ears, and the shape of the chin which form feature
vectors for later recognition [4].

Some approaches use the PCA to decrease the computation time for face
recognition by reducing the used features [4, 44, 60, 70]. PCA tries to find the
components with the best information (eigenvectors / principal components)
of a dataset [71]. It reduces the features by mapping high-dimensional data
onto lower dimensions of feature spaces that contain most of the feature
information [4].

For recognition some approaches calculating the distance of extracted
features to compare the input image to all images in a database [4, 70].
The input image will be recognized as the registered user with the shortest
distance from the database. Other approaches using SVM to classifier and
recognize input images [1]. A more detailed description about recognition
and face recognition will be explained later(see section 4.2).

3.3.5 Time Function and State Storage

When using authentication systems in the continuous domain some ap-
proaches need a current state. The states could be e.g. {����, ��������}
and depending on the input the system is in one of those states. Most con-
tinuous authentication systems use some kind of weighting over time to give
the new observation sample some weight in comparison to current state [63].
The current state is dependent on all previous states and observations. Usu-
ally to realize this all past values must be stored somewhere which would
be consuming an infinite amount of memory over time. To encounter this
problem a Markov chain can be used [44]. A simple explanation of the model
used in this approach would be that only the last state in combination of
the new observation value is needed to calculate a new state. Figure 3.5
(a) shows how this Hidden Markov Model (HMM) can be visualized [65].
The state transition diagram of figure 3.5 (b) shows that once the system is
in {��������} state, the system remains in that state and never transitions
back to {����}. A weight function is used to weight the importance of the
new observation in the first place but is also used to give the current state
a decay. This should prevent that the current state is valid forever when no
new samples are observed. To archive those two criteria the weight function



3. Related Work 25

(a) (b)

Figure 3.5: (a) HMM with states �t and observations �t over time �. (b)
Shows the state transition diagram for the HMM (adapted from [65]).

� = ��∆� is defined, where ∆� is the elapsed time between current time and
last observation and � is a free parameter which defines the decay rate [65].
A low � for example � = 0 means that the user wont be attacked while a
very large � value indicates that attacks are very likely.

Another approach by Crouse et al. [14] uses a simple value ������ which
represents the confidence of the users identity. This value gets initialized
to 1.0 when the user actively logs in and gets continuously updated with a
given cubic transformation function ���� when a new face gets observed (see
in equation 3.1), where the scores at individual false acceptance rates (FAR)
are calculated from an independent dataset and ����� is the face matching
score.

���� =

⎧

⎨

⎩

0.4 ���(�����) ≤ 1%

� ′(�����) 1% < ���(�����) < 20%
−0.4 ���(�����) ≥ 20%

(3.1)

The confidence value ������ should not only be updated between observation
times, it should be decreased in addition over time based on an integral of
function ���� (see in equation 3.2), where ������� defines the time the device
should take to log the user out if no face match data is obtained.

������ℎ = 1.5 ∗ ������� − 6, ����(�) =

⎧

⎨

⎩

−
−0.1

�2
�����ℎ

�2 � < ������ℎ

−0.1 � ≥ ������ℎ

(3.2)

The function ���� is rather constant or can vary with time since last login.
If the confidence value ������ ever drops below a certain threshold the user
gets immediately logged out. Which leads to an equation for ������ (see in
equation 3.3), where ����� is the face matching score, ���� is the current time,
����� is time of the previous calculation and ���� and ���� are the functions
of equation 3.1 and equation 3.2 [14].

������(����) = ������(�����) +

�ses
︁

�prev

������ + ����(�����) (3.3)
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The results in this approach show that in over 96% of the trails users did
not get logged out during the sessions where only images of the genuine
users where used. In over 89% of the trails an imposter had access for less
than two minutes where the majority off all trails had less than one minute
when the ������� was set to 10 minutes. The evaluation used images of ten
participants and captured in total 250000 images from about 3600 sessions
over a period of 1-6 weeks.

Another similar approach also generates a confidence value �����(�) de-
pending on acquired data and the elapsed time between observations [9,
62]. If this confidence score drops below a certain threshold the session will
be closed and the user is no longer verified. The outstanding part of this
approach is that multiple biometrics can be used which will be weighted
and merged before hand to generate a trust value. If at a specific time ��

at most only one biometric observation is valid (e.g. only one of multiple
biometrics could be aquired) the confidence value will be calculated (see in
equation 3.4), where � and � are predefined parameters to tune the decreas-
ing function and ∆�� is the elapsed time between the last and the current
observation time. This decreasing function pursues the same purpose as the
decay functions from previous approaches.

�����(��) =
(−������((∆�� − �) · �) +

Þ

2
) · �����(��⊗1)

−������(−� · �) +
Þ

2

(3.4)

3.4 Summary

In the above sections we have given a short overview of state of the art contin-
uous authentication. There is a significant amount of biometrics which would
fit in those sections but we only focused on the following few: keystroke/-
touch pattern, gait pattern and face authentication systems which have some
similarities to our approach.

In this kind of authentication systems users are not forced to use the
authentication technique on purpose, users get authenticated passively in a
nonintrusive way. Just by using the keyboard or touchscreen, just by walking
or by looking in the front camera the approach is able to recognize, verify
and authenticate or reject the claimant.

Data preprocessing is one very important part to get good results in the
authentication domain. Samples which are used for recognition and authen-
tication should be normalized to get samples of the same size. The length of
the gait signal or the height of the gait energy image or face image should
be the same among the captured samples for a better classification. Another
part of data preprocessing can be noise reduction. This could be done using
filter mechanisms, e.g. filters on gait signals to reduce noise due to the fact
that accelerometer sensors are prone against interferences. Also steps to em-
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phasize the actual payload can be applied, e.g. like histogram equalization
on images in order to increase the contrast in images with poor lighting
conditions. Some other approaches are very vulnerable against outliers, e.g.
like keystroke pattern, where long pauses between typed keys may harm the
robustness of the model. In this kind of approaches these outliers need to
get removed before the actual recognition and authentication. All in all the
preprocessing of data is very important to get good recognition results in
the end.

In terms of feature derivation PCA is a good tool to reduce the amount of
features which will be later on used for classification. Reducing the features
will lead to lower computation times and lower storage in the memory with
nearly as good recognition results as using all original features. Our approach
however do not use principal component analysis it only reduces the features
by rescaling the image to a smaller size.

Those kind of authentication features need somehow consider time as
constant. Where some approaches uses fixed or varying time windows to
check if the current user is authorized to enter the system, other approaches
check from time to time and use this observation data to increase or decrease
a confidence value. If this value drops below a certain threshold the system
transits into a specific state where users are limited in their possibilities
or even getting locked out of the system. If there is such a state which
declares the users identity (owner or attacker) the state needs to change
over time as well when no new observations come into the system. This
needs to be done to prevent attacks where the imposter simply interrupt
the input (e.g. hiding the camera in a face authentication system). Some
systems have a predefined threshold to define a minimum required input
to prevent the mentioned problem (e.g. define a minimum amount of typed
keys in keystroke pattern authentication). Other approaches use some kind
of a decay function, where the confidence value drops over time when no
new examples get acquired. Both approaches will lead the system to transit
in attack-state when no new samples get observed.

The mentioned biometric continuous authentication systems uses differ-
ent approaches to acquire one common goal: creating a system which is safe
and hard to attack in one hand but nonintrusive and continuous on the
other.



Chapter 4

Building Blocks

This chapter will give some general information about face detection. Clas-
sifiers like Support Vector Machines (SVM) and K-nearest-neighbors (kNN)
as well as tools like hidden Markov models (HMM) and principal compo-
nent analysis (PCA) are described. These parts are necessary in order to
understand some techniques which are mentioned in the chapter 3 related
work and chapter 5 about our approach.

4.1 Face Detection

Face detection is one of the most studied and researched computer vision
topics [82]. It is one of the fundamental techniques for human-computer in-
teraction (HCI) and the step stone to all facial analysis algorithms like, face
alignment, face modeling, face relighting, face recognition, face verification,
face authentication, head pose tracking, facial expression tracking, gender
recognition, and many more. The basic task is simple: determine whether
or not there are any faces in an arbitrary image. If so, return the image
location and extent of each detected face. This might be easy for humans
but can be very challenging for machines due to the following factors: pose,
presence or absence of structural components, different facial expression, oc-
clusion, image orientation and imaging conditions [80]. As we can see there
is a variety of factors which can affect the face detection task and make this
a hard achievement in some applications. But the increasing computational
power and the non stopping evolution of algorithms makes face detection
more feasible in the real-world and adapt it to more applications. Applica-
tions like Facebook uses face detection mechanisms for automated person
tagging [81]. Furthermore, the majority of commercial digital cameras uses
embedded face detectors to help auto-focusing. This distribution of the face
detection usage was especially archived by Viola and Jones (explained in
more detail in section 4.1.2), who made face detection practical in nowadays
real-world use-cases.

28
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4.1.1 HAAR Cascade Classifier

The base for HAAR cascade classifiers are the HAAR-like features [75].
HAAR features do not use intensity in pixels (0 - 255 in gray scale images).
They rather use the change in contrast between adjacent rectangular groups
of pixels, to determine relative dark and light areas. HAAR features are
groups of two, three or even four rectangles which can look like the examples
in figure 4.1 [73]. These HAAR features can be easily scaled by adjusting

Figure 4.1: A and B shows two-rectangle feature, C shows a three-rectangle
feature and D a four-rectangle feature [73].

the size of the rectangles. This allows object detection with scale invariance.

Integral Images

The rectangular features of an image can be calculated by so called integral
images which are the intermediate representation of the image [73]. In other
words, integral image at location �, � contains the sum of pixels’ intensity
values (input image) to the left and above �, � including �, �. Let �

︀

�, �
︀

be
the original image and ��

︀

�, �
︀

be the integral image. The integral image
gets calculated like in equation 4.1.

��
︀

�, �
︀

=
︁

�
′

⊘�,�
′

⊘�

�
︀

�′, �′
︀

(4.1)

Each rectangle of the HAAR feature is calculated by those integral images.
The HAAR feature itself gets calculated by the sum of the pixels which
lie within the white rectangles subtracted from the sum of pixels within
the gray rectangles. The integral image allows a rapid calculation of any
rectangular sum because only four array references are needed seen in fig-
ure 4.2 of [64] and corresponding equation for calculating input image pixel
with equation 4.2 and calculating integral image value with equation 4.3
obtained from [64]. This is the base of the fast performance of HAAR-like
features because the integral image can be computed in one pass through
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Figure 4.2: Calculation of locations in the integral image. The mid image
is the original image �

︀

�, �
︀

, the most right image is the integral image

��
︀

�, �
︀

[64].

the image.
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(4.2)
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(4.3)

4.1.2 Viola Jones Face Detection Algorithm

As already mentioned above Viola and Jones created one of the most used
and well known face detection systems [72]. This approach classifies objects
based on simple features instead on pixel basis. The simple reason therefor
is that classification on simple features is much faster than classification on
pixel base. The features which are used are based on HAAR-like features.
To be more specific three different kinds of HAAR features are used, two-
rectangle feature, three-rectangle feature, four-rectangle feature which are
already described in Section 4.1.1. After the calculation of the integral im-
ages of each rectangle feature an algorithm based on AdaBoost is used. This
will select a small number of critical visual features from a larger set. Ad-
aBoost is a machine learning algorithm which is implemented to only find
the best features. AdaBoost will beside the feature reduction purpose also
boost the classification performance of a simple (weak) learning algorithm.
Some simple classifiers are used to reject the majority of sub-windows before
more complex classifiers are called to find the object of interest. In its orig-
inal form AdaBoost uses multiple weak classifiers and combine those to one
strong classifier which allows background regions of the image to be quickly
discarded while spending more computation on promising face-like regions.

4.2 Classification and Face Recognition

4.2.1 Support Vector Machines

Support vector machines (SVM) are large margin classifiers. The goal for
SVMs is to seperate the data samples with a hyperplane where the mar-
gin between the hyperplane and the samples is as large as possible on all
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sides [12]. SVM try to find a hyperplane that is consistent with the data
while committing least to it. Figure 4.3 shows a linear classification example
of two classes (white and black dots) [23]. SVM using a hyperplane (the solid

Figure 4.3: Classification of two classes (white and black dots) [23].

line in Figure 4.3) to seperate the samples where the margin is as large as
possible for the samples on all sides. There are two additional hyperplanes
in figure 4.3 which define the margin between the classes of the sample data
(dashed lines). Those margin hyperplanes are directly located on some of
the samples which are nearest to the classifier hyperplane (the most outer
samples). The samples on the margin-hyperplanes are called support vectors
and those are necessary to create the classification hyperplane. So basically
SVM is an algorithm that finds those specific samples (support vectors) to
create the best separating hyperplane with the highest margin between the
classes. The optimization problem of finding this maximum margins is a
quadratic programming problem [12].

Support vector machines solve the separation of the classes with a linear
function. If the classification is not able to be done via a linear function
the kernel trick comes into play. With the kernel trick the system projects
the data into a higher dimensional feature space to make it linear separate-
able. The kernel itself is the function that projects the data into a higher
dimension. The kernel knows how the points gets transformed into the higher
dimension. The system uses those kernel-function to operate in those higher
dimensions. Therefor it is not necessary to do the computation that actually
transform the points into that higher dimensional space. The fact that the
actual complex computation has not to be done makes SVM so fast [23] [12].
Figure 4.4 will visualize an example for applying the kernel-function.

4.2.2 k-Nearest-Neighbor(KNN)

K-nearest-neighbor (KNN) is a fundamental and simple classification method.
Basic idea for the classification is to select the class of an unknown sample
based on the the �-nearest-neighbors among a dataset of already classified
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Figure 4.4: (a) The samples in 2D space are not linear separate-able. (b)
The samples with additional dimension. (c) The samples seen from different
view are linear seperate-able.

training samples [57]. The distance between the unknown sample and its
neighbors is commonly calculated by the Euclidean distance. Let �� be an
unknown input sample with a total number of � features (��1, ��2, ..., ���).
The Euclidean distance between sample �� and sample �1 is defined as seen
in equation 4.4.

�(��, �1) =

︁

(��1 − �11)2 + (��2 − �12)2 + ... + (��� − �1�)2 (4.4)

A majority vote among the � samples with the lowest distance to the un-
known sample will decide the class of the sample. Figure 4.5 shows an ex-
ample where the parameter � is defined as 4 and the samples have a total
number of � = 2 features. The unknown green sample will be assigned to
class ‘A‘ because among the 4 nearest neighbors of the test samples, the
most frequent class is ‘A‘.
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Figure 4.5: Among the 4 nearest neighbors of the test sample, the most
frequent class label color is red [57].

4.3 Hidden Markov Model

Hidden Markov models (HMM) are a tool for representing probability dis-
tributions over sequences of observations or for modeling time series data.
HMM assume that an observation at a specific time � was generated by
some stochastic process whose state �� is hidden from the observer [26, 58].
A stochastic process is defined as a collection of random variables associated
with or indexed by a set of numbers usually viewed as points in time [39].
The hidden state also has to satisfies the Markov property which implies that
the current state �� is independent of all previous states. Which means that
the state at some point in time encapsulates everything the system needs to
know about the history of the process in order to predict the future of the
process [26, 58]. These two properties are therefor the reason for the naming
of the model. Further details and examples about HMM are explained in
the publication of Rabiner et. al. [58] and the publication of Ghahramani
et. al. [26]

4.4 Principal Component Analysis

The principal component analysis (PCA) tries to find the components with
the best information (eigenvectors / principal components) of a dataset [71].
It reduces the features by mapping high-dimensional data onto lower di-
mensions of feature spaces that contain most of the feature information
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of a dataset [4]. PCA works on all kind of data and is used in different
approaches as seen in the related work chapter 3. This section especially
points out the usage of PCA on face data. The PCA takes sample images
with the same size e.g. k x k-sized face images where � is the amount of
pixels (PCA works on rectangular images as well). Each face sample will
be represented as an unfold 2D vector with �2 values. Equivalent a face is
one point in a �2-dimensional space. PCA creates a matrix of out of those
vectors which is �2 × � where � is the number of face samples used for the
PCA. Afterwards the mean-vector (average face vector) will be subtracted of
each face-vector and the covariance matrix will be calculated. This has to be
done to get eigenvectors (principal components) which are in the so called
principal component (PC) space. The covariance matrix is a matrix with
eigenvalues as diagonal values. Eigenvalues also gets calculated by the PCA.
Eigenvalues indicate how much the eigenvector varies from the mean-vector
(average face). The first eigenvector (with the highest eigenvalue) shows the
most prominent deviation from the mean face. This is one dimension in the
�2-dimensional space. On this dimension (eigenvector) all sample faces vary
the most from the mean. Eigenvectors can be graphically represented as so
called eigenfaces by transforming the eigenvector back to original space. Any
face used in the PCA can be represented by a linear combination of eigen-
vectors (fold and transformed back to original space) and the corresponding
weights. The weight indicates how much influence an eigenvector has on the
representation of a specific face. All face samples are using the same prin-
cipal components / eigenvectors. The only variations among the faces are
the corresponding weights (projection coordinates of the PC-space). This
means if 40 eigenvectors are needed to represent the faces properly only a
vector with 40 values (40 weight values) is needed for the face classification
model. As a result of this each face sample can be represented by its best
individual PCs depending on the intended variance in original space. Addi-
tional information about PCA are explained in more detail in the book of
Dunteman [19] and a publication of Turk and Pentland [71].



Chapter 5

Our Approach: Continuous
Mobile Face Authentication

In this chapter we present a continuous mobile face authentication approach
prototype which distinguishes between the owner of a smartphone and other
users (possible attackers) which might want harm the owner. There are
plenty of other face authentication approaches on the market or in research
but most of them are explicit, some exceptions are stated in the previous
related work section 3. Explicit means that users have to explicitly look into
the camera to be authenticated. This demands user attention and time, so
the user experience is negatively affected by those points. The main motiva-
tion for this face authentication approach is to create an unobtrusive, con-
tinuous and mobile face authentication prototype. Users need not actively
authenticate on the system, they work on the device, and automatically re-
main authenticated when they have the permission to. We summarize the
design goals for such a system as the following:

• Continuous: the current user of the smartphone will be validated all
the time instead of only at the entry-point.

• Mobile: the use cases for the system are designed for smartphones and
the smartphones front facing camera.

• Unobtrusive: the authentication is transparent for users and therefore
no active interaction with the authentication system is necessary.

In our approach we only consider the authentication of attackers against one
smartphone owner, because a smartphone is usually privately owned and not
shared by multiple users. The continuous mobile face authentication system
requires video-sequences or camera streams captured by the front facing
camera and use them for authentication.

35
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5.1 Continuous Mobile Face Authentication
Toolchain

The following section will give an overview of the used modules in the system.
First part of our proposed continuous mobile face authentication toolchain
(see figure 5.1) is the acquisition of data by using the front facing camera of
a smartphone to acquire video sequences. In the next step single frames get
extracted and forwarded to the face detection module. For face detection, we
use OpenCV’s1 HAAR feature-based cascade classifier based on Viola and
Jones’ ground breaking algorithm [52] to detect faces in the extracted im-
ages (see section 4.1.2). After the detection of the face region the image gets
preprocessed by segmenting the face region, applying gray scale filters to get
rid of color information and histogram filters to increase the contrast in the
image. Another part of the preprocessing module is the rescaling process of
the image to a fixed size of 50 x 50 pixel. This is important to reduce the fea-
tures for decreasing calculation time for recognition and to get a normalized
image size among all upcoming samples. The next important module creates
difference images out of the segmented and preprocessed face images. This is
important for the recognition module being able to handle face images which
are not in the training dataset. The difference images can be either positive
when both input images are of the smartphone owner, or negative otherwise.
Based on difference images we apply face recognition using the LibSVM2 li-
brary [10]. We first train a face classification model with the preprocessed
and labeled difference images then perform face recognition to get a clas-
sification result. The system has two possible states which indicates if the
system is currently recognizing the owner of the smartphone or an allegedly
attacker (see transition diagram in related work section 3.5). Those states
can change over time and are depending on the current confidence score.
In order to get a confidence score a confidence value will be calculated as a
combination of the recognition probability, the old confidence value, a weight
function and a time decay function. The weight function is needed to give
the observation samples a weighting depending on the elapsed time between
two consecutive observations. The time decay function decreases the confi-
dence score over time to avoid attacks. For the owner enrollment phase some
reference images are needed to define who is the owner of the smartphone.
After the classifier model creation video-sequences or live video-streams can
be used to predict on.

1
OpenCV is an open source computer vision library. goto OpenCV homepage.

2
LibSVM is an integrated software for support vector classification, regression and

distribution estimation. goto LibSVM homepage.

<http://opencv.org>
<https://www.csie.ntu.edu.tw/~cjlin/libsvm/>
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Figure 5.1: Overview of modules used in the continuous mobile face au-
thentication system.

5.2 Data Acquisition and Image Preprocessing

In our approach the data for face classification model training and recogni-
tion are collected via the front facing camera of a smartphone. The collected
data samples are mp4-video sequences with a bit depth of 24 bit, a resolu-
tion of 640 x 480 pixel, a frame rate of 30 fps and a length of 60 seconds.
The first step in the face detection module is to extract single frames from
the video sequence. In our approach every frame of the video sequence is
used for recognition purpose. After one frame is extracted the face will be
detected by the HAAR feature-based cascade classifier of the OpenCV li-
brary. To search for the face in the whole image one can move the search
window across the image and check every location using the classifier. The
classifier is designed so that it can be easily resized in order to be able to
find the objects of interest at different sizes. So, to find an object of an un-
known size in the image the scan procedure should be done several times at
different scales [52]. After a face is detected the location and the dimension
of each face will be returned. This will lead to a list of possible faces because
the classifier is able to detect more faces in one image. Due to the fact that
smartphones are on different locations with different lighting conditions it
is possible that the classifier predicts non-face objects in the image as face.
Therefor only the biggest face region will count as face when the size of the
region is at least 25% of the whole image. This will prevent that people in
the background (shoulder surfing, see figure 5.2) or other small objects in
the image falsely count as faces.
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Figure 5.2: Owner of the smartphone with a shoulder surfing person in the
back.

After the detection of the face region of interest (at least 25%) the re-
gion gets segmented and used for further preprocessing. The next step is
to apply a gray scale filter to the color image. This will reduce the file size
(approximately from raw: 360KB to gray 208 KB) as well as the informa-
tion per pixel (from raw: 3 channel to gray with 1 channel). Color may be
beneficial in some applications but the additional unnecessary information
would increase the amount of training data needed to achieve good per-
formance [38]. The next step is to apply a histogram filter to increase the
contrast in gray scale images with bad lighting conditions. Figure 5.3 shows
the difference between an image with bad lighting and the same image with
applied histogram filter. The last step in the preprocessing module is image

(a) (b)

Figure 5.3: (a) Image before histogram equalization. (b) Image after his-
togram equalization.

normalization. Face regions in the image can range from minimum 25% (of
640 x 480 pixel) to a maximum of 640 x 480 pixel (input image size). To
get a normalized image size among all image samples for training as well as
those image samples for later on recognition, the face region will be resized
to 50 x 50 pixels. This makes it easier for the face recognition system due to
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the fact that most classification models perform better on a uniform amount
of features (pixels). The computation time needed for classification also will
benefit of the feature (pixel) reduction. Another type of feature reduction
would be PCA which is done in some approaches of the related work in
section 3.2 and section 3.3 but omitted in our approach.

5.3 Difference Image Creation

A very important part of the toolchain is the creation of difference images.
This will allow the system to work on samples of participants which are
beyond the database. If only samples within the database can be recognized
correctly, the authentication system is called gallery dependent which is a
big problem in real world applications. The system could not handle sam-
ples of people outside of the database. For example: if users are not in the
database they will be matched as one person which is in the database. Users
will be matched as the database sample with the highest equality. If this
match would be the owner by coincidence, the attacker would get access to
the system and to private data or even passwords. Difference image creation
can prevent this and make the system gallery independent. To create such
difference images two preprocessed images will be used. The images are rep-
resented by 2D matrices where every matrix entry is the density value of
the pixel at this point. To calculate the difference image (matrix) a sim-
ple absolute difference calculation (absolute distance per feature) between
both matrices will be executed. This calculation generates samples as in fig-
ure 5.4 (c) and figure 5.5 (c). In order to get a gallery independent system
we want to create a two-class problem (owner and not-owner) out of the
� -class problem(where � is the number of different people in the training
database). Therefor before the training of the classification model the dif-
ference images need to get labeled with N for not-owner samples (negative)
and P for owner samples (positive). In training those labeled samples are
used to train the classifier, in the application scenario the trained classifier
will predict on unknown difference images. As we already mentioned our ap-
proach only considers the authentication of people against one smartphone
owner therefor we need to define which label is corresponding to the owner
first. If now a difference image is calculated with both images of the owner
the sample gets labeled as positive sample (like in figure 5.4) or labeled neg-
ative (like in figure 5.5) otherwise. After the creation of a good amount of
difference images the face classification model can be trained.
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(a) (b) (c)

Figure 5.4: (a) Owner reference sample of the database (b) Owner obser-
vation sample (c) Difference image, labeled positive.

(a) (b) (c)

Figure 5.5: (a) Owner reference sample of the database (b) Not-owner
observation sample (c) Difference image, labeled negative.

5.4 Recognition

Before the actual recognition part where new, unlabeled, preprocessed, dif-
ference images are going to be classified, the SVM face recognition model
need to be trained. Therefor the LibSVM model training methods are used
with a set of parameters [10]. Parameters which need to be considered are
for linear classification SVMs the � and the Ò-parameter, where � defines
the smoothness of the margins and Ò defines the influence of a single training
sample. If the Ò-value is low samples which are far away from the decision
boundary (hyperplane) also take into consideration. If Ò is high, only sam-
ples close to the decision boundary will be considered. A small � allows some
samples between margins, a high �-parameter allows no samples between
margins which can lead to overfitting.

After the successful training of the classification model with the labeled
difference images we now perform face recognition. When a new, unknown
and unlabeled face sample comes into the recognition module (either from
a video-sequence or a camera stream) new difference samples getting gener-
ated. The difference samples will be calculated with the current observation
and pre-saved reference owner face samples. This will lead to a list of �
difference images, where � is the amount of pre-saved reference owner face
samples. Depending on calculation speed and prediction accuracy a good
amount of owner samples need to be chosen here. Recognition will be per-
formed on that generated list of difference images to calculate probabilities
related to the two classes {�����, ��� − �����}.
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5.5 Weight Function

This module takes the probabilities of the recognition module and multi-
plies them with the output value of a weighting function. Depending on the
time between two consecutive images out of the video sequence, the new
face sample need to be weighted. This is necessary when a new face sample
comes into the authentication system after a long period of no face detec-
tions. The new sample should have a big impact on the confidence score. The
calculation of the new confidence score is stated in equation 5.3 in the confi-
dence score calculation section 5.7. If the new face would not have a strong
impact, the face of an allegedly attacker would not influence the confidence
score that much and the attacker would have access to the smartphone for
a long time (see section 6.1 scenario 3). In another case if the user wants
to use the smartphone after a period where no faces got detected, he has
to wait for a long time to increase the confidence score for accessing the
smartphone and using the wanted features.

So basically the weight function ���� is a tool to weight how much a
new face sample should influence the current confidence. The function ����

is an exponential function (see equation 5.1) with two parameters ∆� and
�, where ∆� is the elapsed time between two consecutive face samples and �
is a constant which is responsible for the strictness (slope) of the function.
With a high �, the old confidence value has more impact than the new
observation value when calculating the new confidence score. With a low
�, the old confidence value has less impact than the new observation value
when calculating the new confidence score (see figure 5.6).

����(∆�) = �⊗ ∆t
k (5.1)

(a) (b)

Figure 5.6: Plot of the weight function, where on the y-axis is the function
value �wei and on the x-axis is ∆� ranging between 0 and 30000. (a) weight
function with a � of 5000, (b) with a � of 10000.
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5.6 Time Decay Function

One of the most important parts of our approach is the time decay function
���� along side with the the weighting function of section 5.5. In a continu-
ous system such as in our approach one important factor is time. As time
goes by the current state of the system {����, ������} should change when
the confidence score drops below a certain level. As mentioned in section 6.1
scenario 2 and scenario 4, the system should transit into ������-state when
no new face samples are acquired for a specific period. This should prevent a
simple attack approach where the allegedly attacker gets access to the smart-
phone just by hiding the front facing camera. Therefor, every observation
loop where no new face gets detected a function gets called which calculates
a time decay value which gets multiplied with the current confidence value.
The function is the same as the weight function in equation 5.2 but with a
different constant � depending on the desired confidence decay-duration.

����(∆�) = �⊗ ∆t
k (5.2)

Similar to our weight and decay functions are the functions in Crouse et.
al. [14] and Sim et. al. [65] continuous authentication approaches. Both as
well as our approach uses functions to weight the importance of incoming
samples. The confidance value is depending on the probability calculated
by the classification model in combination with the weight function. Sim
et. al. exponential weight function looks similar to ours, where Crouse et.
al. follows a different approach and uses a cubic transformation (see equa-
tion 3.1). Sim et. al. uses a single function in each calculation iteration for
two reasons: a) weighting the importance of a new observation; and b) for
time decay calculation. However in our approach only one function is used
each iteration. The weight function is used when a face is detected and the
decay function when no face is detected. Crouse et. al. also uses two inde-
pendent functions for weighting samples and for time decay calculation but
both at each iteration.

5.7 Confidence Score Calculation

The confidence score which is responsible for the systems state transitions
{����, ������} get calculated / updated in two different ways as seen in
figure 5.7. The different ways are depending on the fact if a face can get de-
tected in the extracted face image or not. If a face is detected the confidence
score gets multiplied with the weight function ���� (see section 5.5). If there
is no face detected the confidence score should decrease over time. This is
achieved by multiplying the current confidence value with the result of the
time decay function ���� (see section 5.6).
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A face is detected. The first step for calculation the confidence score
when a face gets detected is the generation of the difference images. Depend-
ing on the amount of pre-saved user samples the same amount of difference
samples are going to be generated (see section 5.4). Lets say there are 20
pre-saved, preprocessed owner face samples, this will generate 20 difference
face samples (20 owner samples and one observation sample). The calcula-
tion of the confidence score �� is the average value �� of the 20 recognition
values multiplied with the opposite weight function value (1 − ����) added
the old confidence score ��⊗1 multiplied the weight function ����, as seen in
equation 5.3.

�� = (��⊗1 · ����) + (�� · (1 − ����)) (5.3)

No face is detected. When no face can be detected in the detection
module the current confidence score �� will be decreased by multiplying the
value of the time decay function ���� which is seen in equation 5.4.

�� = ��⊗1 · ���� (5.4)

The confidence score is saved in a simplified hidden Markov model. Only
the previous confidence score and the current observation are needed to
calculate a new confidence score. When the confidence score drops below
a certain threshold the system should transit into ������-state and make
the system safe against an attacker. Sim et. al. used a similar approach also
with a simplified HMM [65]. The main difference between their approach and
ours is that once the system transits into ������-state it can not transit back
into ����-state. Our approach however transits back to ����-state once the
threshold is reached, which is necessary to achieve the unobtrusive design
goal. Figure 5.7 shows the procedure of our approach.
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Figure 5.7: Flow chart representation of the continuous mobile face authen-
tication system.



Chapter 6

Evaluation Data

To test and reproducibly evaluate our approach we created a video face-
database. We created this face-database under different conditions in-the-
field with a smartphone recording application. We decided to do this for
several reasons: a) to generate videos which are authentic to general smart-
phone usage, in terms of mimic and gestures. The participants should act
normal and pretend to use the smartphone like they usually do. No specific
gestures nor mimic was predefined. To help the participants to act normal
the recording application shows random articles during the recording ses-
sion to distract them from the actual recording task; b) to get different
ambient and lighting conditions which occur usually when interacting with
the smartphone. Three main lighting conditions are defined for each partici-
pant. Outdoor daytime where it can happen that the sun light shines into
the camera. This can create shades and darkens parts of the participants
faces. Indoor with poor lighting conditions to get videos with darker
surrounding where the face appears darker than usual and indoor with

good lighting conditions where artificial light sources give good lighting
conditions. Also the backgrounds are random and not chosen on purpose
to achieve the mobile design goal; and c) for generating videos for testing
the application with different scenarios. In the testing scenarios either one
or two participants are involved and simulate the smartphone usage with
and without an allegedly attacker. We basically came up with four scenarios
to describe the interactions where the smartphone owner and an allegedly
attacker are involved.

6.1 Scenarios

In this section we show some of the application scenarios to depict the im-
portance of the weight function module and decay function module. We
basically came up with four scenarios to describe the interactions where the
smartphone owner and an allegedly attacker are involved.

45
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Scenario 1: Owner or attacker only. In the first scenario there is only
one participant involved: either the owner of the smartphone or an allegedly
attacker. The system only obtains face samples either of the owner where it
should be in ����-state, or of the attacker where it should be in ������-state,
along the whole observation period.

Scenario 1: Owner or attacker only. In the first scenario there is only
one participant involved: either the owner of the smartphone or an allegedly
attacker. The system only obtains face samples either of the owner where it
should be in ����-state, or of the attacker where it should be in ������-state,
along the whole observation period.

Scenario 2: Owner or attacker with a pause. In the second scenario
again only one participant is involved, but this time the observation period
contains a pause where no faces are detected. In this pause the system should
not be in ����-state. This should prevent that an attacker is able to access
the smartphone just by interrupting the obtainment of new face samples by
hiding the front camera. After the pause where no faces were obtained the
system should react fast to new samples either of the owner or the attacker.

Scenario 3: Owner and attacker. In this scenario both participants,
smartphone owner and allegedly attacker are involved. Samples of the owner
are immediately followed by samples of the attacker. The system should be
able to adapt fast and transit into ������-state when non-owner samples are
obtained or transit into ����-state the other way around (attacker samples
followed by owner samples).

Scenario 4: Owner and attacker with a pause. The last basic sce-
nario is like scenario 3 but instead of the prompt alternation between the
two participants a small pause is in between. During the pause the system
should be in ������-state to prevent the threat like described in scenario 2.
The system also should be able to adapt fast to the participant alternation
described in scenario 3.

Those videos which are not used for testing the scenarios are basically
recordings of the participants faces using the front facing camera where they
interact with the smartphone. This videos have a length of 60 seconds and
a resolution of either 640 x 480 pixel or 320 x 240 pixel depending on the
setting used in the recording application (640 x 480 is default setting). The
videos are colored RGB videos with 30 frames per second in mp4 format. The
database was created in multiple sessions on random locations to achieve the
mobile design goal.
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6.2 Recording Application

To record the evaluation data for the authentication approach an Android
recording application was developed. The application uses the front facing
camera of a smartphone to record videos of the participants. The application
basically has three views (see figure 6.1). In the setting screen the video
resolution can be chosen. The choice is between 640 x 480 pixel or 320 x
240 pixel, where 640 x 480 pixel is the default setting. In the initial screen
the participants have to enter the name and the current lighting condition.
They can chose between outdoor daytime, indoor good light and indoor
poor light. Depending on the chosen name an ascending index is going to be
generated which is necessary to distinguish between owner and non-owner
video sequences during the model training. In the recording screen a random
Wikipedia article is displayed to distract the participants from the actual
video recording. This should help the participants to look natural and not
having a fake mimic or gesture.

(a) (b) (c)

Figure 6.1: Application screenshots. (a) Setting screen to set the video
resolution, (b) the initial screen to set the name and lighting condition, (c)
the recording screen.

6.3 Participants

For the database creation 23 different participants took part of the video
recording tasks. The participants are different in age and gender. Also some
of the participants were wearing glasses or hats during the recording sessions.
Figure 6.2 will show the distribution of the different factors like age, gender
and accessories worn during recording session. Unfortunately the partici-
pants are from the same ethnic origin which is unfavorable for a proper data
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Figure 6.2: Diversity among the participants in different factors like age,
gender and accessories worn during recording session.

diversity. To depict the different lighting conditions figure 6.3 will show four
different images with different conditions. Image (c) and (d) of figure 6.3
are both recordings from outdoor, however in image (d) the light angle was
poor so the face of the participant occurs darker than in image (c). Those
are scenarios which the application must handle and therefor random loca-
tions and different lighting conditions were recorded. Figure 6.4 show some
examples of images extracted from the video sequences on different locations
and the corresponding preprocessed gray scale image which will be used for
model training.

6.4 Test Data for Model Training

For face authentication with video-sequences or video streams first of all
a classification model needs to be trained. Therefor images need to be ex-
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(a) (b)

(c) (d)

Figure 6.3: (a) indoor with good lighting conditions. (b) indoor with poor
lighting conditions (c) outdoor with good lighting conditions (d) outdoor
when face is full of shade.

tracted from the video-sequences. But not every frame is used of the recorded
60 second video sequences, in order to save storage every 20th frame is used
when a face is detected. If no face is detected the next frame is used. When
ten times in a row no face can get detected, 30 frames (a whole second of
the video) are skipped and the next frame is used instead. This should avoid
long computation time when multiple frames in a row do not contain a single
face. This leads to an amount of approximately 50 to 80 images per video
depending on the lighting and the corresponding face detections. For the
creation of the face-database three different videos of 10 different persons
out of 23 participants were chosen (approximately 50% of video-sequences
used for training and approximately 50% of video-sequences used for eval-
uating the model). Unfortunately there was one video were we could not
extract face images because the encoding is broken, therefor only 29 videos
can be used. To get a good ratio between owner and non-owner difference
samples, the predefined owner has more than just three different videos and
not every frame of the non-owner videos is considered for the different im-
age creation. A owner to non-owner ratio of approximately 1:2 was intended
which results to a total amount of 12543 difference images and a good ratio
between owner-class and non-owner-class.
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(a) (b) (c) (d)

Figure 6.4: (a)(c) Image extracted from video sequence. (b)(d) Same ex-
ample preprocessed.
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6.5 Test Data for Model Evaluation

For testing the trained model some special video sequences were recorded in
addition to the remaining 50% of the face-database. The participant videos
contain only one person per video, the additional evaluation data however
can contain multiple persons in a single video-sequence. Some of the evalu-
ation video-sequences also contain periods where no persons are seen at all
and only black frames are available. Those special video-sequences look like
described in the following list:

• Owner only.

• Owner is followed by a pause, followed by the owner again.

• Owner is immediately followed by the allegedly attacker.

• Owner is followed by a pause, followed by the attacker afterward.

• Attacker only.

• Attacker is immediately followed by the owner.

• Attacker is followed by a pause, followed by the owner afterward.

Table 6.1 gives a detailed listing of the face-database which are used for
evaluating the continuous mobile face authentication approach.

Participants Sum of Videos Owner Videos

Train Dataset

10 29 (3 videos each) 9

Evaluation Dataset

12 36 (3 videos each) 9

Table 6.1: Data partitioning for training and evaluating the classification
model.



Chapter 7

Evaluation

This chapter describes the implementation and evaluation of the prototypes
along the creation of the continuous mobile face authentication approach.
The implementation of the finished prototype was a step by step process
where the functionalities of the prototypes were evaluated and improved in
every step of the process. The first step (see section 7.1) is a prototypical im-
plementation of a face recognition system on a Windows desktop computer.
This face recognition prototype already uses OpenCV’s HAAR feature-based
cascade classifier based on Viola and Jones’ algorithm to detect faces in the
images [52]. This approach however is not able to recognize people beyond
the test database (test data which is used for training the classifier model).
This problem was solved in the second step (see section 7.2). This prototype
is able to transform a � -class problem into a two-class problem, thus the
prototype is able to predict persons beyond the test database. This is pos-
sible with the implementation of the difference image module. Also a very
important part in this step is the weight function module. This function
weights the importance of the face observation sample depending on the
elapsed time between two observations. To save the confidence value which
is responsible for the owner and non-owner recognition in the face authen-
tication approach a second module, a simplified hidden Markov model is
used. The benefit of this module is that only the previous confidence score
and the current face observation are needed to calculate a new confidence
score. Therefor the history of previous observations is obsolete. Also the
Android recording application was implemented and the consequent video
face database was recorded in this step to train the classification model and
evaluate the finished continuous mobile face authentication prototype. In the
third and last step (see section 7.3) a time decay module was introduced.
This is necessary to give the confidence value a decay over time when for a
period no new face samples can be detected.

The final continuous mobile face authentication system was evaluated in
form of a case study. One participant was predefined as the owner of the

52
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smartphone and the remaining 22 participants are all allegedly attackers.
In the evaluation scenario, the owner of the smartphone is static and never
changes. Further special scenarios also always have the same predefined par-
ticipant as owner (this applies for section 7.2 and section 7.3).

7.1 Recognition Prototype

In this section we present our first approach towards continuous mobile face
authentication. We implemented a face recognition prototype to identify dif-
ferent people within a small prerecorded video database. This video database
included five videos of five different people each. Each video was labeled cor-
responding to the person for later identification. Images were recorded with
a laptop’s web camera and merged together to image-stacks. 80% of the
image-stacks were used for training the recognition classifier model, the re-
maining 20% were used for model evaluation. This prototype is not able to
predict on people beyond the face-database, which will be implemented in
the next step of the implementation process. To create the classifier model
all frames were extracted of the image-stack. Frames with a face in it were
used for model training, the rest was not used and ignored. For the evalua-
tion also only the frames with a face in it were used. This approach is just
able to recognize participants within the database. Therefor the classifier
model predicts five different probabilities for five different participants.

7.1.1 Recognition Prototype Toolchain

Figure 7.1 gives a short overview of the modules used in the recognition
prototype and the process to come up with the probabilities for each par-
ticipant. When the input image-stack is from an unknown person beyond
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Figure 7.1: Overview of modules used in the recognition prototype. At the
end of the toolchain five different probabilities for five different persons are
calculated.

the test video database this person will be identified as one person within
the database which is most similar to the unknown one. The fact that this
prototype is not able to predict on unknown people makes it inappropriate
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for our continuous mobile face authentication approach and therefor needs
to be improved.

7.1.2 Results Recognition Prototype

The extracted images of the image-stacks which where used at this stage of
the prototype are similar to the extracted images of the finished continuous
mobile face authentication approach (see section 7.3). This prototype ignores
images where no face is detected and therefore in every used frame a face is
available and a prediction can be made. The following figure 7.2 shows the
prediction on an image-stack containing images of ‘user1‘. The prediction in
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Figure 7.2: Face recognition on an image-stack containing images of ‘user1‘.

this image-stack is inaccurate and only on a short period in the middle and in
the end recognizes the participant properly. Figure 7.3 shows the prediction
on an image-stack of ‘user2‘. The middle section of the prediction graph is
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Figure 7.3: Face recognition on an image-stack containing images of ‘user2‘.

positive and nearly on 100% probability. The probability indicates that the
image-stack belongs to the correct user. The start of the prediction though
was similar to the prediction on ‘user1‘ pretty inaccurate and jittery. The
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last prediction (see figure 7.4) shows the prediction on the image-stack of
‘user3‘. This prediction is the best out of the given three examples. Only the
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Figure 7.4: Face recognition on an image-stack containing images of ‘user3‘.

start gives bad prediction result for the given user. The rest of the prediction
graph is positive and nearly on 100% probability.

7.1.3 Discussion

We assume that the inaccurate predictions are the result of the lack of data
used at this stage of the prototype. We assume that we would achieve a
better prediction rate on the different participants when more image-stacks
would be used for training. This would lead to a better prediction accu-
racy which we evaluated in the later sections in this chapter (see section 7.2
and section 7.3). The different lengths of the prediction graphs depict the
fact that only frames with a face in it are considered in this stage of the
prototype. This is the reason for the unequal lengths among the evaluation
image-stacks. The findings of the first prototype show that some improve-
ments are necessary for a useful approach. Modules like the weight function
need to be implemented as well as the transformation from the multi-class
problem to a two-class problem to come up with a proper continuous mo-
bile face authentication approach. But the basic detection module and the
preprocessing of the images are useful and can be used in the improved
prototype.

7.2 Authentication Prototype

In this section we describe the next step towards our continuous mobile
face authentication prototype. The biggest improvement in this step is the
prediction on video-sequences of unknown people (peolpe beyond the test
face-database). The improvement which makes this possible is the imple-
mented difference image creation module, which is not implemented in the



7. Evaluation 56

previous approach. Another important step towards the finished prototype
is the weight function module. Without this function every observation sam-
ple would be weighted equally and the elapsed time between two consecutive
observations would be irrelevant. The time though is an important factor in
continuous authentication systems in order to react in time when a switch
between owner and non-owner happens. If an owner-frame is followed by
a non-owner frame and the elapsed time between those two frames is high
the last observation should be weighted more and should have more impact
when calculating the new confidence value. Is the elapsed time between two
frames high, the old confidence value (sum of previous observations) should
be weighted lower than the new observation and vice versa. One part which
is missing in this approach is the confidence decay over time, which was
added in the last step of the implementation process. To get an overview of
the toolchain of the prototype the used modules are depicted in figure 7.5.
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Figure 7.5: Overview of modules used in the continuous mobile face au-
thentication system.

7.2.1 Difference Image Module

In order to transforms a multi-class problem {������1, ������2, ..., ������� }
into a two-class problem {�����, ��� − �����}, which is necessary for our
approach, the extracted and preprocessed images need to get transformed
into difference-image space. This is done by calculating a difference image
by subtracting one preprocessed image from another. In the model training
stage if both images are of the owner (depending on the image label) the
created difference image is labeled with ‘P‘ for positive sample, otherwise
with ‘N‘ for negative sample. Those labeled samples are used for training.
In the evaluation stage the observed sample will be transformed into a set
of difference images. The set-size is depending on the size of the predefined
reference image-set (35 reference images in our approach). Those reference
images are used to transform a new observation image into 35 images in the
difference-images-space. The images in difference-image space are used to
calculate an average probability to determine if the new observation is from
the owner or from another participant. This average probability is used in
addition with the weight function and the old confidence value to calculate
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the new confidence value (the finished prototype also uses the decay function
in addition, see section 7.3). Depending on the amount of those reference
images a tradeoff between calculation speed and calculation accuracy need to
be done. Using more reference images leads to a better accuracy but slows
the calculation speed and vice versa. Some of the owner and non-owner
difference-images are shown in figure 7.6. The darker the difference-images
appear the more similar are the two input images.

Positive difference samples

Negative difference samples

Figure 7.6: Difference images created out of two preprocessed gray-scale
images. The darker the image appears the more similar are the input images.

7.2.2 Weight Function

In this step of the implementation process we also used a weighting function
to weight the importance of the observation sample based on the elapsed
time to the previous observation. Depending on the strictness of the weight
function a switch between two participants (owner, and non-owner) will be
recognized sooner or later. We predefined a threshold of 0.7, which the posi-
tive value has to exceed in order to count as positive owner prediction. In the
following images four different weight function constants and the resulting
strictness is depicted (see figure 7.7 and figure 7.8). ‘Strictness‘ is the term
which is used to describe the output value of the weight function and the con-
sequent importance of the new observation sample. The images in figure 7.7
and figure 7.8 show the probability graph of a video-sequence where in the
first half the owner and in the second half a non-owner is visible (switch on
index 880). The different images in the figures are created with a different
strictness of the weight function. Figure 7.7 and figure 7.8 distinguish in the
allegedly attacker in the second half of the video. Videos of the participant
from figure 7.8 are not used in the model training, however videos of the par-
ticipant from figure 7.7 were used in the model training process (the videos
for model training are different to the evaluation video-sequences though).
We assume that this is the reason why the attacker in figure 7.7 is recognized
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that good. The strictness in the images ranges from no weight function in
the first image, to a weight function with low strictness in the last image
(high weight function constant). A weight function with a high strictness
means in our case that the old confidence value has less impact compared to
the new observation value, when calculating the new confidence score and
vice versa. This is visible in the second image of figure 7.7 and figure 7.8
where the positive confidence graph is jittery and nearly the same as the
confidence graph in the first image without any weighting function. A lower
strictness results in a smoother confidence graph. New observations do not
have that much impact on the new confidence value calculation compared
to all other observation values before (the current confidence score is the
result of all previous confidence score calculations), even if they are extreme
high or extreme low (outliers). This is depicted in figure 7.8 between index
370 and 390 where one outlier (a false negative prediction, actual owner
sample but predicted as non-owner) impacts the confidence graph more or
less depending on the weight function strictness.
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7.2.3 Test Setup

For model training and evaluating we used a data partition where approx-
imately 50% of the face-database videos are used for training the classifi-
cation model and the other 50% are used for evaluating the trained model.
For this approximately the half of the face-database is randomly chosen and
used to create the difference images for training the classification model. To
get those difference samples every image needs to be subtracted of every
other image of the database and labeled with P for owner samples and N for
non-owner samples. This would lead to approximately 1.67 million difference
image samples (Gaussian empirical formula). Therefore not every image is
considered in the creation process and some are skipped. The other 50% of
the face-database are used for evaluating the trained model with unknown
data. The predefined owner however, has more than just three videos to get
a good ratio between owner and non-owner samples of approximately 1:2 for
training the model (for a detailed listing see table 6.1).

To calculate the difference images and predict on those, to recognize ei-
ther the owner or the allegedly attacker, a set of reference images of the
owner is necessary. Therefor a set of randomly chosen images (35 reference
images in our approach) is extracted and used for this purpose. The ex-
tracted 35 images are not used for training the model classifier. In addition
to the owner and attacker videos some special evaluation video-sequences
(with owner and attacker) are recorded and used to test the switch between
owner and non-owner and how long the system needs to react to this switch.
The function which is responsible for this is the weight function.

7.2.4 Results Authentication Prototype

The following four boxplots in figure 7.9 show the distribution of the pre-
dicted P and N probabilities. To come up with the boxplots one frame per
second is considered and the corresponding probabilities are used of this
exact frame. In this case the P and N probabilities are both corresponding
to the non-owner videos compared to the owner (negative class). The P and
N probabilities sum up to 1 in each frame. A perfect boxplot result would
only show predictions of the N probability over the threshold of 0.7. The
first three boxplots show the probabilities of all participants for one light
and ambient condition each. The last boxplot shows the probabilities of all
participants for all light and ambient conditions combined (in the wild prob-
abilities). The participants which are used for this evaluation are not used
for training the model classifier and therefor should give a prospect of the
system performance on unknown people. In this case the outdoor daytime
condition (see (c) figure 7.9) has some false predictions. Reason for the over-
all false positive samples in the outdoor daytime condition video-sequences
are the wrong predictions specially on two people (see figure 7.10).
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(a) (b)

(c) (d)

Figure 7.9: Distribution of the predicted P and N probabilities in non-owner
video-sequences in different lighting and ambient conditions. (a)(b) and (c)
each shows the distribution of one light condition at a time. (d) shows the
distribution of all light conditions combined.



7. Evaluation 63

Figure 7.10: Distribution of the predicted P and N probabilities on one
person each in condition outdoor daytime. Those two people have big impact
on the overall prediction probability.

The next four boxplots in figure 7.11 are the same as the previous ones
but now with P and N probabilities of one frame per second corresponding
to the owner videos compared to the owner (positive class). The classifier
model is trained with videos of the owner. However the videos for training
the model and the videos for evaluating the model are different. The P and
N probabilities again sum up to 1 in each frame. A perfect boxplot result
would only show predictions of the P probability over the threshold of 0.7.
The first three boxplots show the probabilities of all owner video for one
light and ambient condition (three videos each). The last boxplot shows the
probabilities of all lighting and ambient conditions combined (in the wild
probabilities). In this case some false prediction outliers are specially in the
indoor poor light condition (see (b) figure 7.11).

With the the P and N probabilities considering one frame per second of
all video-comparisons (non-owner videos compared with owner and owner
videos compared with owner) the true positive rates (TPR)and the false pos-
itive rates (FPR) can be calculated. A P prediction value over the threshold
of 0.7 is considered as positive prediction and a N prediction value under the
threshold of 0.7 is considered as negative. In table 7.1 the TPR and FPR
are stated for every light condition, which indicate the performance of our
approach.

Condition TPR FPR

Indoor Good 0.774 1.0

Indoor Poor 0.715 1.0

Outdoor Daytime 0.84 0.970

All (In-the-wild) 0.789 0.988

Table 7.1: true positive rates (TPR) and the false positive rates (FPR)
calculated for each condition.
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(a) (b)

(c) (d)

Figure 7.11: Distribution of the predicted P and N probabilities in non-
owner video-sequences in different lighting and ambient conditions. (a)(b)
and (c) each shows the distribution of one light condition at a time. (d)
shows the distribution of all light conditions combined.

7.2.5 Discussion

The boxplots in figure 7.9 and figure 7.11 depict the fact that some condi-
tions perform better for a specific class than others. Also differences between
the conditions themselves are visible. In the non-owner videos the predic-
tion density on the outdoor condition scatter more than in the other two
conditions. Also the prediction on owner videos perform worse in the indoor
poor lighting condition than the others, in terms of probability density scat-
ter. We assume that we could improve the prediction rate on videos with
stubborn conditions with increasing the number of training videos for those
stubborn lighting and ambient conditions.

We decided to use the medium strictness for the weight function which
is a good trade off between accuracy and a good weight function output
that does not impact the overall confidence score when new values are ob-
served (which a low strictness weight function does for example). Assume
we have a value of 100% confidence it takes 3580 milliseconds to drop from
100% to 69.9% (below threshold of 70%) confidence when only considering
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the old confidence value, which is quite fast. The finished confidence score
calculation however requires the old confidence value and the new observa-
tion value in combination with the weight function (see section 5.5). The
strictness of the weight function can be adapted and tuned for the different
users and scenarios, so it is not necessary that we found the perfect value
for the parametrization.

7.3 Improved Authentication Prototype

In this section we present the finished continuous mobile face authentica-
tion prototype. The implementation of the decay function is the essential
improvement in this step of the implementation process. This is necessary to
give the confidence value a decay over time when no new faces get detected,
which was not implemented in the previous approach. This is a security mea-
sure to avoid attacks where an allegedly attacker gets access just by hiding
the front facing camera. This could happen when the owner uses the smart-
phone and the confidence value is high enough to get access, the attacker
could circumvent the authentication mechanism just by hiding the camera
and thereby stop the face image acquisition whereby the confidence score
stays the same. To prevent this attack we introduced the decay function to
decrease the confidence score over time when this scenario occurs. To get an
overview of the toolchain of the finished prototype the used modules are de-
picted in figure 7.12. The toolchain is the same as in the previous approach
only the decay function calculation was considered in the confidence score
calculation which was missing in the previous approach.

Face 

Detection, 

Seg-

mentation 

Data 

Acquisition 

(Video-

sequence) 

 

Difference 

Image 

creation 

Face 

Recognition 

Classifier 

Confidence 

Calculation

Over Time 

P: 0.9 

N: 0.1 

Image 

Extraction 

Recognition 

Probabilities 

of Current 

Image 

Confidence 

Score 

Pre-

processing 

Figure 7.12: Overview of modules used in the continuous mobile face au-
thentication system.

7.3.1 Decay Function

The last big implementation step was the consideration of time and the
corresponding decay of the confidence score when no faces can get detected.
This is important because without this function the confidence score would
stay the same in the period where no new faces can get detected. Figure 7.13
depict different levels of decay. The images in figure 7.13 show the probability
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graph of a video-sequence where the owner is visible. The owner frames are
interrupted by a period of plain black frames in the middle of the video-
sequence (between index 570 and index 930). The first image shows the
confidence graph without any decay. The confidence score stays at the same
height during the period where no faces can get detected. The other three
images show different intensities of the decay function ascending in intensity.
The higher the intensity of the decay function the faster drops the positive
confidence graph when no face can get detected. Index 570 in figure 7.13
is the first frame of the video-sequence without a face of the upcoming no-
face-period. Depending on the decay intensity the faster or slower will the
positive confidence value drop.
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7.3.2 Test Setup

In this step of the prototype we again used for model training and evaluation
a data partitioning of approximately 50% of the video-sequences for training
the classification model and 50% for evaluating the trained model. We used
the same half of the participants as in the evaluation of the authentication
prototype in section 7.2. Also the predefined owner has again more videos
than the other participants to get a good ratio between owner and non-owner
samples for the model training (for a detailed listing see table 6.1). Also the
owner reference images are the same as in the authentication prototype
of section 7.2. For testing the decay function some special video-sequences
were captured. Video-sequences with a short time where no faces can get
detected (plain black frames) are recorded. This was acquired by hiding the
front facing camera as described in the attack scenario.

For training the classification model we used the LibSVM model train-
ing methods with a set of parameters [10]. We used a linear SVM of type
C_SVM (default classification type for the SVM) with a Ò-parameter of 0.5
and a C-parameter of 1.

7.3.3 Results Improved Authentication Prototype

The following four boxplots in figure 7.14 show the distribution of the pre-
dicted P and N probabilities. To come up with the boxplots again one frame
per second is considered and the corresponding probabilities are used of this
exact frame. In this case the P and N probabilities are both correspond-
ing to the non-owner videos compared to the owner (negative class). The
P and N probabilities sum up to 1 in each frame. A perfect boxplot result
would only show predictions of the N probability over the threshold of 0.7.
The first three boxplots show the probabilities of all participants for one
light and ambient condition each. The last boxplot shows the probabilities
of all participants for all light and ambient conditions combined (in the wild
probabilities). This is the same as in the evaluation in section 7.2.4 but
with the additional decay function. The participants which are used for this
evaluation are again not used for training the model classifier therefor these
plots should give a prospect of the system performance on unknown people.
In this case the outdoor daytime condition has some false predictions. The
reason for the overall false positive samples in the outdoor daytime con-
dition video-sequences are the wrong predictions specially on two persons
(see figure 7.15). This is similar without the decay function in the previous
prototype.

The next four boxplots in figure 7.16 are the same as the previous ones
but now with P and N probabilities of one frame per second corresponding
to the owner videos compared to the owner (positive class). The P and
N probabilities again sum up to 1 in each frame. A perfect boxplot result
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(a) (b)

(c) (d)

Figure 7.14: Distribution of the predicted P and N probabilities in non-
owner video-sequences in different lighting and ambient conditions. (a)(b)
and (c) each shows the distribution of one light condition at a time. (d)
shows the distribution of all light conditions combined. The graphs show the
results with decay functions.

Figure 7.15: Distribution of the predicted P and N probabilities on one
person each in condition outdoor daytime. Those two persons have big impact
on the overall prediction probability.
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would only show predictions of the P probability over the threshold of 0.7.
In this case some false prediction outliers are specially in the indoor poor
light condition (see (b) figure 7.16).

(a) (b)

(c) (d)

Figure 7.16: Distribution of the predicted P and N probabilities in owner
video-sequences in different lighting and ambient conditions. (a)(b) and (c)
each shows the distribution of one light condition at a time. (d) shows the
distribution of all light conditions combined. The graphs show the results
with decay functions.

With the the P and N probabilities considering one frame per second of
all video-comparisons (non-owner videos compared with owner and owner
videos compared with owner) the true positive rates (TPR) and the false
positive rates (FPR) can be calculated. In table 7.2 the TPR and FPR are
stated for every light condition with the decay function considered, which
indicate the performance of our final approach. There are some false classifi-
cations though specially in the false negative samples (FN, actual owner and
predicted as non-owner) which is depicted in the TPR values in table 7.2.
Most of those false classifications are generated in the outdoor daytime con-
dition which can be seen in the image (c) in figure 7.16. The overall predic-
tion of 90.75% and the TPR and FPR results in table 7.2 though indicates a
good prediction accuracy of the finished authentication prototype specially
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when predicting on allegedly attackers.

Condition TPR FPR

Indoor Good 0.582 1

Indoor Poor 0.539 1

Outdoor Daytime 0.483 0.980

All (In-the-wild) 0.528 0.992

Table 7.2: true positive rates (TPR) and the false positive rates (FPR)
calculated for each condition with considered decay function.

The upcoming images in figure 7.17 show four different ROC-curves (re-
ceiver operating characteristic curve). A ROC-curve should give an overview
of the performance of a binary ({�����, ��� − �����}) classifier at various
threshold settings. Four different ROC-curves are depicted in figure 7.17.
The first three graphs show the TPR versus FPR predictions of one of
the conditions each, the last graph shows the prediction of all three con-
ditions combined. A perfect ROC-curve would hug the upper left corner
which means that the classifier does a good job separating the classes. A
bad classifier would have a ROC-curve near or along the diagonal dashed
line, which means that the classifier does nothing more than random guess-
ing. In our case the classifier does a good job separating the classes. Only
at some threshold settings will the negative and positive class prediction
overlap which leads to a wrong prediction (see density-plot in figure 7.18).

7.3.4 Discussion

The box-plot images (see figure 7.14 and figure 7.16) show that the proto-
type with the decay function performs slightly better on non-owner video-
sequences specially in the outdoor daytime condition in comparison to the
prototype without the decay function. The owner videos have a higher neg-
ative probability percentage when the decay function is used than without
decay. We assume that the reason therefor are the samples where no faces
get detected and the positive confidence score drops on these samples. This
lead to a higher negative percentage in the overall prediction which is de-
picted in the overall TPR of 0.582. An overall prediction accuracy of 90.75%
and a FPR of 0.992 though are good indicator that our continuous mobile
authentication approach performs good specially when detecting allegedly
attackers. Also the density plot (see figure 7.18) and the ROC-curves (see
figure 7.17) indicate a good performance of our approach with the predefined
threshold.

We used a medium decay intensity which makes a good tradeoff between
a fast reaction on no-face images (and the corresponding confidence score
decrease) and a good function output that does not impact the overall con-
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ROC Curve for Condition: Outdoor Daytime
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Figure 7.17: Comparison of the TPR and the FPR to depict the perfor-
mance of the binary classifier.

fidence score when one outlier occurs (no-face image detected). If one single
no-face detection would impact the overall confidence score, the graph would
be jittery and drop below the threshold on some points only because of a
single no-face detection. The intensity of the decay function can be adapted
and tuned for the different users and scenarios, so it is not necessary that
we found the perfect value for the parametrization.
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Figure 7.18: Density of the predicted probabilities of all videos of all par-
ticipants. On the x-axis is the predicted probability and on the y-axes the
amount of observations. The vertical line indicates our predefined threshold.



Chapter 8

Conclusion

We worked on a continuous mobile face authentication approach which is
able to distinguish between the predefined owner of the smartphone and
other users which might harm the owner by getting access to sensible data.
There are plenty of other face authentication approaches on the market or
currently in research, but most of them are explicit. There are some of the
exceptions stated in the related work chapter 3. Explicit or active means
that users have to explicitly look into the camera to be authenticated. The
user experience is negatively affected by demanding the users attention on
one hand and the users time on the other. In our approach users must not ac-
tively authenticate, they just have to work on the device, and automatically
remain authenticated when they have the permission to. The continuous mo-
bile face authentication system requires video-sequences or camera streams
captured by the front facing camera and use them for authentication. In
our approach we only consider the authentication of one smartphone owner
against attackers, because a smartphone is usually privately owned and not
shared by multiple users. The implementation of the finished prototype was
a step by step process where the functionality of the prototypes were eval-
uated and improved in every step of the process.

Our first implementation was a prototypical implementation of a face
recognition system which is able to recognize faces in images and distinguish
between different persons. This face recognition prototype uses OpenCV’s
HAAR feature-based cascade classifier based on Viola and Jones’ algo-
rithm [52]. This prototype however is not able to detect people beyond the
test database. Basic parts of the implementation in this step like the frame
extraction from video-sequences, the preprocessing of those images and the
face detection in those preprocessed images are working fine and provide the
base of the finished prototype. The prototype is able to detect multiple faces
in one image and only consider the biggest one when a minimum height and
width is given. This should circumvent shoulder surfing and avoid detecting
objects in the background of the user which are non-face objects.

74
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The main improvements in the second step of the implementation process
were the weight function and the simplified hidden Markov model to save the
current state as well as the implementation of the difference creation module.
The weight function is an important part of the toolchain which gives a new
observation value an importance depending on the elapsed time between
two consecutive observations. The evaluation shows that the introduction
of the weight function works better in comparison to an approach without
any weighting. With the weighting new observations do not have that much
impact on the confidence value calculation compared to all other observation
values before, even if the observation value is extreme high or extreme low
(outliers). The difference creation module is able to transform a multi-class
problem into a two-class problem which is necessary in our finished approach
to predict on unknown persons. Therefor the module calculates the difference
of two images by subtracting one image from another and label it as owner
or non-owner image for the classifier training, or use it for prediction on
unknown people. Also the Android recording application was implemented
in this step so we were able to record the face-database. The face-database
was used to train the face classification model and for evaluating different
parts of the approach like predicting on unknown persons, testing the weight
function and the decay function. A lesson we learned during the evaluation
at an earlier stage in the implementation process was that a good data
diversity in terms of lighting and ambient conditions makes big improvement
in the performance, when predicting on unknown video-sequences. The data
diversity was not good in the first prototypes and in the first tests, so we
improved this with the recording of our own face-database. In terms of the
results section though, we assume that there are some possible performance
improvements by extending the face database and use more videos of more
participants, specially in some conditions where the classifier do not perform
as well. Therefore an extension of the face-database is the logical next step.

The last step towards the finished approach was the implementation of
the decay function in order to give the confidence score a decay over time
when for a period no new faces can get detected in the images. This is a
security measure to avoid attacks where an allegedly attacker gets access
just by hiding the front facing camera. Results indicate that the improved
authentication approach with the decay function performs better when pre-
dicting on non-owner videos and a bit worse on owner video-sequences. We
assume that the reason therefor are the samples where no faces get detected
and the positive confidence score drops on these samples which is not the
case in the prototype without any decay function. This lead to a higher neg-
ative percentage in the overall prediction TPR of 0.582, but with an overall
prediction accuracy of 90.75% a FPR of 0.992 quite good though.

Our approach was evaluated in form of a case study because we pre-
defined one participant as owner of the smartphone and the rest of the
participants all as allegedly attackers. In the evaluation, the owner of the
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smartphone is static and never changes. An improvement for a future pro-
totype and a more generic approach would be that any participant could be
the owner of the device. This would require some improvements in the appli-
cation in terms of a more generic classifier training phase. Another point left
open by our current approach and implementation is the liveness detection
of the user to avoid photo attacks. It is currently possible to trick the face
detection module with photos of the smartphone owner to gain access. There
is also room for improvement on preprocessing images in poor light condi-
tions. In some of those images no faces can get detected because of the bad
lighting which generates shadows in the participants faces and prevent the
face detection module to detect the face. Challenges such as large diversity
in lighting and ambient conditions which are present in the current mobile
face authentication domain, also apply for our approach, and therefor might
be in the focus of our future work too.
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