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ABSTRACT
Mobile devices, ubiquitous in modern lifestyle, embody and
provide convenient access to our digital lives. Being small
and mobile, they are easily lost or stole, therefore require
strong authentication to mitigate the risk of unauthorized
access. Common knowledge-based mechanism like PIN or
pattern, however, fail to scale with the high frequency but
short duration of device interactions and ever increasing num-
ber of mobile devices carried simultaneously. To overcome
these limitations, we present CORMORANT, an extensible
framework for risk-aware multi-modal biometric authenti-
cation across multiple mobile devices that offers increased
security and requires less user interaction.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Authentication

Keywords
multi-modal authentication, risk assessment, biometrics

1. INTRODUCTION
Smartphones, tablets, smartwatches and other mobile de-

vices have long become an indispensable part of everyday
life, allowing easy access to valuable assets, information and
services. Since those small and mobile devices have a high
propensity to become lost or stolen, strong user authenti-
cation is crucial to protect against the risk of unauthorized
access. Therefore, knowledge-based mechanisms like PIN,
pattern, and password are commonly applied today. Besides
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well-studied shortcomings like people being bad at choos-
ing and remembering adequate secrets [29] or vulnerability
to shoulder surfing and smudge attacks [2], these authen-
tication techniques require a significant amount of scarce
user attention in proportion to the usually short usage ses-
sions [13]. An effect that is even further amplified by the
inability of current approaches to scale with the ever growing
number of devices used simultaneously. As a result, a survey
found that 57,1% of smartphone users do not use authen-
tication, many of which stated that they considered it to
be too inconvenient [10]. As a promising approach to over-
come the aforementioned drawbacks, continuous unobtrusive
user identity verification using different biometrics has been
proposed. Commonly used traits include gait, voice, finger
pressure, user interface interaction, mouse movement, and
keystroke dynamics. While these features can be captured
unobtrusively, they are not necessarily available at all times.
Multi-modal fusion schemes to combine multiple biometrics
have hence been developed, usually classified as either fea-
ture level fusion, matching score level fusion, and decision
level fusion strategies [24].

User authentication on mobile devices is generally applied
to defend against the risk of unauthorized access to data and
services through an adversary with physical access to the
device. This risk, however, is arguably dynamic and highly
depends on spatial and temporal context. Considering risk
in order to apply as much security as needed but as little
as possible potentially facilitates less obtrusive, adequately
tailored and thus user-friendly security mechanisms [15].

In this paper, we present the design of CORMORANT , an
extensible, risk-aware multi-modal authentication framework
for continuous user identity verification [12].

2. RELATED WORK
Multi-modal biometric systems, i.e., systems incorporat-

ing biometric information from multiple sources, have been
well studied for several decades to overcome some drawbacks
of unimodal biometrics or to defend against spoofing attacks
[23]. Recently, the concept of multi-modal biometrics has
been successfully applied to the domain of mobile devices.
The authors of [16] utilized face, teeth and voice authentica-



tion on mobile devices. Face and voice biometrics are also
combined for mobile user identification in [27]. In [5], the au-
thors propose an authentication framework using keystroke
dynamics and speaker verification on mobile devices.

Since risk is ultimately the cause for any security mea-
sures, it has been considered in different aspects of computer
security. In [7], the authors proposed a contextual risk-based
access control system based on a mathematical scoring tech-
nique assigning numerical weights to risk factors to improve
confidentiality, integrity, and availability of the resulting ac-
cess control model. The risk-based authentication system
introduced in [26] defines risk differently from our work as the
likelihood of an intruder impersonating a genuine user, which
is continuously evaluated based on mouse and keystroke dy-
namics. In [3], the concept of risk is applied to develop a
risk-aware role based access control system that allows to
enforce risk-related constrain in scenarios where certain com-
binations of permission are considered too powerful (or risky)
and should thus not be assigned to the same role.

Surprisingly few authors have so far addressed the scal-
ability problem arising from the ever growing number of
personal devices used simultaneously. In [25], a hardware to-
ken based approach is introduced in order to avoid password
challenges for different accounts and devices. The authors
of [11] propose a centralized authentication system to omit
authentication for online services or notebook access. Work
closest to our approach is [14], who’s authors envision an
authentication aura formed by trusted devices surrounding
the user, even taking location as one major determinant of
risk into account.

3. THE CORMORANT FRAMEWORK

3.1 Motivation and Goals
Given a choice, users implicitly conduct a cost–risk anal-

ysis, for instance when choosing a password or deciding
whether to use a lockscreen or not. Cost from the user’s
perspective in this situation could be the added cognitive
effort and perceived overhead. By increasing the usability
and user-friendliness of authentication, perceived costs of de-
vice protection can be reduced, allowing to achieve an higher
security level overall. To contribute to this goal, we develop
CORMORANT, an extensible open source framework that
combines various arbitrary implicit and explicit authentica-
tion techniques. Our approach is novel in three aspects: We
aim to utilize a number of arbitrary biometrics along con-
ventional knowledge-based and potentially possession-based
authentication mechanisms. Unlike existing work, features
of the utilized biometrics like captured traits, availability
and or accuracy are not a priori known but highly dynamic
as new biometrics can be added to the system at runtime
from third party sources. Secondly, we make extensive use of
continuous context-based risk evaluation, allowing to both
fine-tune access control and thus reduce user interruption
as well as increase overall security. The third distinctive
feature is the inclusion of information not only from one
but possibly all trusted device a user possesses. This could
enable, for instance, devices to derive sufficient confidence
in the user’s identity from other trusted devices nearby to
omit explicit authentication. If for instance a user is contin-
uously authenticated through gait recognition applied on his
smartwatch [20], the user’s smartphone could establish his
identity without explicit authentication if both devices trust

each other and are able to determine that they are within
close proximity (e.g., ≤ 1m).

3.2 Architecture
In the design and development of CORMORANT we strive

to enable two properties not commonly found in similar re-
search projects: The designed system is supposed to be de-
ployable on stock Android devices, usable for average con-
sumers (e.g., not require a deeper understanding of how to
train biometric classifiers) and provide benefits, e.g., in terms
of enhanced convenience that outweigh inevitable disadvan-
tages like reduced battery life. These aspirations introduce
limitations like missing hardware access through public APIs
as required by many indoor location techniques. The other
major design paradigm we follow in designing the framework
is to facilitate collaboration with and contributions by re-
searchers working on novel authentication or risk evaluation
techniques. The proposed framework, which will be released
under an open source license once it reaches alpha status, is
easily extensible through a convenient plugin mechanism as
outlined in fig. 1. The system can be extended at runtime
by installing additional authentication and risk plugins.

Figure 1: Preliminary architectural overview

While a number of plugins like gait, voice, and face recogni-
tion are provided by default, the framework itself is indepen-
dent and solely relies on the presence of corresponding plug-
ins. It can therefore serve as a platform for researches who,
by leveraging the infrastructure provided by CORMORANT ,
can focus efforts on their primary research goals rather than
dealing with common tasks like providing fall-back authen-
tication, operating system integration, and collecting usage
and performance statistics. Plugins connect to the frame-
work through a lean API based on the OSGi whiteboard
pattern [22], posing only minimal implementation require-
ments. Changes in risk assessment or authentication state
are propagated either event-based, periodically pulled or
explicitly requested upon necessity, for instance to trigger
explicit authentication.



4. RISK PLUGINS
Establishing security always introduces cost of some sort,

e.g., in terms of money, performance, or usability. Achieving
a higher level of security naturally increases those associated
costs: A long password is stronger than a short one, but
takes more time to enter. Hence, a trade-off between cost
and security exists when evaluating the appropriated level of
security, which depends on the risk to defend against. Risk
is commonly considered to be the product of the probability
of an adverse event occurring as well as the resulting impact.
These two dimensions, however, are by no means static but
highly dependent on the current situation or context. Con-
sidering that authentication on mobile devices is applied to
defend against the risk of unauthorized access, the following
examples of contextual properties influencing this risk can
be unobtrusively captured by modern mobile devices:

Probability of Unauthorized Access.
• Macro location: The risk of being mugged or robbed

varies drastically on country level. It is, according to
the United Nations Office on Drugs and Crime, highest
in Southern Africa and lowest in South Asia [1].
• Micro location: Crime rates also vary on city or even

district level. The South Bronx, NY, USA, for instance,
is known for having a notably higher crime rate than,
e.g., Brooklyn1.
• Contextual location: The probability of unautho-

rized access also depends on the contextual nature of
a location. Smartphone loss, for instance can occur in
public transport but not at home.
• Time of day: In the US, robberies, for instance, are

statistically roughly three times more likely at night
(5:00 PM to 4:59 AM) than during daytime [8].

Impact of Unauthorized Access.
• Sensitivity of data: The adverse impact of unautho-

rized access is arguably less if this device contains no or
only publicly available data compared to very private
or compromising data.
• Accessible services: The number (and significance)

of accessible services affects the potential harm. An
active business VPN, for instance, might endanger a
remote company network.
• Value of transactions: The associated damage of

an unauthorized mobile banking transaction literally
depends on the pecuniary value of the transaction.

While these examples arguably have an objective influ-
ence on the risk of unauthorized access, one has to keep in
mind that the perceived or even actual risk vary across users.
While some might consider their home sufficiently safe to
omit authentication, others might not appreciate their de-
vice being accessed by a wary spouse or children [10].

5. AUTHENTICATION PLUGINS

5.1 Gait Recognition
Gait as a biometric trait offers an unobtrusive way of

recognizing individuals from their walking styles. Various
studies have explored the feasibility of deploying gait au-
thentication on off-the-shelf mobile devices [6, 18, 20, 21].

1http://maps.nyc.gov/crime/

We have developed a gait plug-in that implicitly processes
accelerometer data and delivers authentication results to the
CORMORANT framework. Figure 2 outlines the steps in-
volved in the enrollment and the verification phases, details
of which can be found in [20]. To enroll, a gait template is
created by walking ≈ 300 meters at normal pace, carrying
the mobile phone in the trousers’ front pocket. Once the gait
template is generated, the plugin automatically switches to
verification phase, which is similar to the enrollment phase.
Capturing acceleration data is fairly power-intensive. We
therefore utilize a low-powered ever-on step detector sensor
to avoid recording accelerometer data when the user is not
actually walking. Once the user starts walking, the step
detector triggers the plugin which in turn registers to the
accelerometer sensor to start recording acceleration values.
Accelerometer data are record for a period of fifteen seconds,
after which the application checks if user is still walking by
monitoring the timestamps between the steps taken by the
user, and if so, continues to record acceleration data. In
parallel, previously recorded data are processed and authen-
tication results computed by applying a matching engine
that uses Dynamic Time Warping distance to compare live
gait cycles with the enrolled template.

Figure 2: Continuous gait authentication overview

5.2 Speaker Recognition
Speaker recognition is a technique that allows to iden-

tify individuals from their voice samples. Speaker recogni-
tion systems can be divided in two types: text-dependent
and text-independent [4]. In text-dependent speaker recog-
nition systems users use the same utterance for enrollment
and verification phase. In text-independent system, how-
ever, users are not bound to use the same utterance for
enrollment and verification process. We have developed a
text-independent speaker verification plug-in that processes
speaker data recorded by a mobile device’s microphone and
delivers authentication results to the CORMORANT frame-
work. Figure 3 shows various steps of the enrollment and
the verification process. In the enrollment step, speakers
provide their voice samples. These samples undergo voice
activity detection which removes no-voice parts from the



Figure 3: Voice authentication overview

samples. Subsequently, standard Mel Frequency Cepstral
Coefficients (MFCC) technique is applied to extract features
from the voice samples. Following, Vector Quantization (VQ)
is used to generate a speaker-specific codebook by clustering
the MFCC features using K-Means clustering algorithm [17].
During verification phase, MFCC features are extracted from
the test voice. The minimum average distance of test fea-
ture vectors to all code books is computed by eq. (1) where
DQis the average quantization distortion between test fea-
ture vector V and speaker model codebook Y . D(x, y) is the
multi-dimension Euclidean distance function.

DQ(V, Y ) =
1

M

M∑
i=1

min
1≤j≤n

D(vi, yj) (1)

5.3 Face Recognition
Face authentication deals with verifying or identifying in-

dividuals based on their facial features, which are usually
derived from face images. Therefore, face authentication
systems employ a number of different steps to perform face
authentication – including face image recording, image pre-
processing, face detection and face recognition. The authen-
tication information is usually derived from face recognition
results then. With our face authentication plugin [9] (see
fig. 4) we utilize similar mechanisms. At first, the mobile de-
vice camera is used to record face images. These images are
preprocessed (grayscaling, brightness and contrast adjust-
ments), then Viola and Jones face detection [19, 28] is ap-
plied to detect and segment faces present in the images. For
facial face feature derivation we currently employ principal
component analysis (PCA) and either K-nearest-neighbor
(KNN) or support vector machines (SVM) classification as
face recognition. The plugin’s authentication confidence used
in our framework is derived from these classification results
then. In the enrollment phase users take multiple pictures of
themselves in different illumination conditions, which serve
as training data. In the verification phase, face authentica-
tion could be used both in an explicit and implicit manner
in our framework. With explicit usage, users are requested

Figure 4: Face authentication overview.

to perform face authentication, then explicitly take a picture
of their face. The authentication confidence of this face is
used by the framework then. In contrast, for implicit us-
age, faces visible to the mobile device camera are monitored
continuously while the device is used (e.g. screen is turned
on). In case users leave their device unlocked and unattended
and a unauthorized person starts interacting with the device,
face authentication will not recognize the face as authorized,
which will further lead to a drop in authentication confidence.

Face authentication could be used as well in the context
of risk assessment: faces of multiple people being present in
images used for face authentication could indicate increased
risk of shoulder surfing attacks (e.g. input of PINs, passwords
and graphical patterns) or overhearing of pass phrases (e.g.
non-text-free voice authentication scenarios).

6. CONCLUSION AND FUTURE WORK
In this work we presented the preliminary design of COR-

MORANT , an extensible framework for risk-aware multi-
modal authentication on mobile devices. By continuously
assessing the risk of unauthorized access while evaluating the
user’s identity using various biometrics it facilitates both con-
venient and more user-friendly security while it can also be
configured to achieve a higher level of overall security. Open
research questions to be address next are how to exchange
risk and authentication scores across devices, initial device
pairing, group key exchange, device exclusion, and spatial
distance estimation. We intent to eventually evaluate the us-
ability, performance, and practicality of the CORMORANT
framework by conducting extensive in situ user study.
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