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Abstract

In the past decades, usage behavior and digital life style rapidly changed
with emerging technologies such as smartphones, highspeed mobile telecom-
munication standards, social media, etc. While we are using countless digital
services and devices on a regular basis, our main way of authentication re-
mained unchanged: session-based authentication with tokens or secrets can
be considered as de facto standard.

Continuous authentication might be a suitable concept to cope with
those new conditions. While it would be impractical to continuously enter
a password on a mobile phone, authentication just by touching the device
seems tempting. Electrocardiographic (ECG) data can be continuously cap-
tured and verified. It is recorded by mere skin contact to ECG sensors.

In this thesis we design, build and evaluate a continuous ECG authen-
tication system. Therefore, we record the FH Hagenberg Research ECG
Database (FRED). We employ machine learning models for classification
and finally evaluate system performance for identification and authentica-
tion use cases. Results indicate that continuous ECG authentication can
achieve an equal error rate of about 7%. Unobtrusive data recording allows
continuous ECG authentication to extend mobile device security, without
necessarily reducing usability.
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Chapter 1

Introduction

1.1 Motivation
“I think there is a world market for maybe five computers.”

– allegedly Thomas J. Watson, IBM chairman, 1943

Obviously, this quote that is rumored to originate from Thomas J. Watson
turned out to be underestimated. In the past decades, the number of com-
puter systems grew rapidly and underwent a transformation from mainframe
to truly personal computer. Smartphones, tablets, smartwatches, wearables
and other personal devices contribute to the trend towards ubiquitous com-
puting. Moreover, a new lifestyle emerged, where computer systems became
more than tools dedicated for a certain purpose, but the real-world represen-
tation of the digital life. As devices like smartphones accompany us all day
and serve us in every possible situation, they contain a lot of valuable infor-
mation. From bank account, personal or business mail correspondence and
health information, to private pictures, documents or social media accounts,
our devices contain a lot of personal, sensitive and valuable information.

We try to protect our data from unauthorized access by employing au-
thentication techniques. Traditional authentication schemes usually include
secrets or tokens which are verified once per session, while security-wise it
would be beneficial to perform authentication more frequently. This in turn
demands for highly usable authentication technologies which require no or
hardly any user interaction. While it is virtually impossible to continuously
enter a 20-digit alphanumeric password, especially on mobile devices with
limited user interface such as smartwatches, health trackers or wearables,
many biometrics qualify for continuous use.

In search of new authentication technologies which qualify for continu-
ous use while providing best possible security, the electrocardiogram (ECG)
might be of interest. The ECG depicts the electrical potential of the heart
over time and is commonly used for diagnostic investigation. It depends

1



1. Introduction 2

on the individual physiology of the cardiovascular system, but cannot be
derived by the phenotype of a person. The waveform of the signal has a
characteristic shape, but varies between individuals. This individual varia-
tion in ECG signal can be exploited to distinguish people, to identify them
by comparing their ECG to recordings within a database, or to test authen-
ticity of a claimed identity. ECG is captured as easy as making skin contact
by touching or approaching a sensor. In many cases, the interaction with a
system already requires physical contact between user and system. There-
fore, no additional interaction would be needed, to acquire a persons ECG.
Furthermore, unobtrusive recording of ECG signals allows for the concept
of continuous authentication, which is able to provide immediate intruder
detection. Therefore, ECG is capable of adding security and usability to
authentication systems.

1.2 Thesis Goal and Structure
In this thesis, we design, build and evaluate a system that continuously cap-
tures ECG data and provides authentication based on this data. In chapter
2, we study well known biometric authentication technologies, deal with
their advantages and disadvantages and compare them with ECG authenti-
cation. Then, we review available technologies for capturing, processing and
classifying ECG data. Chapter 3 covers basic concepts biometric authentica-
tion technologies commonly are built upon. The properties of ECG waves,
recording and authentication technologies are explained in detail, as well
as a comparative evaluation of existing ECG authentication approaches is
presented in chapter 4. We proceed with designing and building our mobile,
continuous ECG authentication system. We present our own approach in
chapter 5. We record the FH Hagenberg Research ECG Database (FRED)
using our hardware to evaluate and compare the classification performance
of our system with state-of-the-art biometrics in chapter 6. Finally, we draw
our conclusion in chapter 7.



Chapter 2

Biometric Authentication

Traditional authentication technologies provide access protection for a sys-
tem in the beginning and for the duration of a session, i.e. the system is
unlocked and accessible until it is locked by the user or automated mecha-
nisms like timeouts or intruder detection. Authentication is provided based
on something you know (knowledge-based) or something you have (token-
based). These methods have several disadvantages. First of all, validity of
the claimed identity is bound to a password or a key rather than to the
user. If they are unavailable, e.g. a password cannot be remembered or a
token was lost, authenticity of legitimate users cannot be verified. Further-
more, everyone who came into possession of those, e.g. by misappropriating
or finding previously lost tokens or gaining access to passwords via phishing
attacks, is able to authenticate on a system. To prevent unauthorized access
to a system, e.g. by rainbow table or bruteforce attacks, long and complex
passwords are required. In the case of password authentication, usability
and security are contradictory requirements. The ever-growing number of
devices and services, requiring long and complex passwords that shouldn’t
be reused across different systems makes the application of knowledge-based
authentication increasingly inconvenient. For systems with limited user in-
terface, where only a small (e.g. smartphone) or no keyboard at all (e.g.
smartwatch, wearables, health trackers, etc.) is available, different authen-
tication methods need to be employed.

2.1 Why Biometric Authentication
Biometrics are inherent behavioral or physiological properties of living be-
ings. In other words, biometrics describe our appearance, what and how we
are. Biometric traits include physiological properties like body height, face
or fingerprint, as well as behavioral properties like voice, gait or signature.
These properties are tightly bonded to who we are. The main advantages
of biometric authentication, including usability, availability, security and

3



2. Biometric Authentication 4

portability are directly inferred from this bond. Biometric authentication
technologies are able to provide both security and usability while keeping
the user interface minimal. They are usable, because other than passwords,
biometrics have a small cognitive load. There is nothing to remember and
therefore nothing to forget. For acquisition of many biometric traits, mini-
mal user interaction is necessary, as stated in section 2.4. As authentication
doesn’t end in itself, but is a necessity to control access and use of resources,
it shouldn’t obstruct or hinder usage of those resources. Keeping the level
of user interaction for authentication as low as possible, adds to usability
and ultimately increases user acceptance. They are available, because most
biometrics don’t change significantly within weeks or months and they are
on hand wherever we go. From some biometrics like voice, gait or ECG, even
liveliness can be derived. They are secure, because many offer high classifi-
cation rates, they are not prone to shoulder surfing and counterfeit attacks
at least require a certain degree of equipment and preparation. And last but
not least they are portable, because most biometrics can be measured with
sensors that have small form factor and would easily fit into most mobile
devices.

While the use of biometrics for authentication purposes offers many ad-
vantages, there are also security and privacy concerns arising. Biometrics
contain personal and possibly sensitive information. System, service or au-
thentication providers shouldn’t gain access to biometrics, as the information
contained in biometric signals could be abused or lost. Once the integrity
of biometrics is compromised, they cannot easily be revoked or renewed.
Therefore it is necessary to protect biometric patterns accordingly. One
possibility is the application of biometric template protection schemes, that
obfuscate original biometric information while maintaining authentication
performance. Biometric template protection will be discussed in section 2.6.

2.2 Continuous Authentication
Regardless whether tokens, passwords or biometrics are used, authenticity
is granted based on the assumption that the identity of the user remains the
same for the lifetime of the session [24]. This assumption might have been
justified in the past, but since computing became mobile and ubiquitous, it
certainly no longer is.

For the means of security, it would be of benefit to repeat authentica-
tion as often as possible to ensure the authenticity of the user. Continuous
authentication is the concept of performing user validation not only once in
the beginning of a session, but repeatedly throughout the duration of user
interaction. It is well known for using behavioral features, e.g. the inter-
action with the system like keystroke dynamics, mouse usage, application
usage, etc. [17], but behavioral features might fail in providing sufficiently



2. Biometric Authentication 5

high levels of security, causing biometric authentication to be limited to low
security purposes and intruder detection. By combining continuous authen-
tication with physiological biometrics, possibly higher levels of security can
be achieved. However, while continuous authentication is beneficial to secu-
rity, it shouldn’t decrease usability and user acceptance at the risk of being
deactivated.

2.3 User Friendly Authentication
Devices are routinely locked after periods of inactivity, which makes unlock-
ing a quite frequent task in everyday life. Harbach et al. (2014) conducted an
online survey and longitudinal field study regarding smartphone locking and
unlocking behavior. The participants unlocked their phones on average 47.8
times per day, with a median of 42.1 and a standard deviation of 26.4 un-
locks per day. Roughly a quarter of secured unlocks is perceived unnecessary
by the users, with higher levels of dissatisfaction for private environments
and secured unlocking mechanisms than for unsecured unlocks in public.
As pointed out in [26], 57.1% of the participants do not use secured unlock
mechanisms, with a majority stating “inconvenience” as the primary rea-
son. Therefore it is inevitable for authentication technologies to adapt to
the changed circumstances.

With traditional, high security authentication methods such as long and
complex passwords, frequent authentication would increase inconvenience,
lower usability and therefore decrease user acceptance at the risk of se-
cured authentication being deactivated. System security can be improved,
if users are continuously authenticated with a sufficiently strong authenti-
cation mechanism, while maintaining a high level of user acceptance and
satisfaction. Luckily, the “what/who/how you are” type of keys, i.e. biomet-
rics are permanently available and in some cases require no user interaction
beyond regular use of the system.

The combination of continuous and biometric authentication can provide
seamless use of a system, moving the task of user authentication away from
the user, towards the system. Authenticity of users is checked continuously,
providing immediate response to intruders. High levels of security can be
achieved either by selecting highly secure biometrics, or by combining several
highly usable biometrics into a multimodal framework.

2.4 Well Known Biometrics
There is a wide variety of different biometrics available for authentication
today, as depicted in figure 2.1. This section provides an overview of several
well known biometrics.
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Figure 2.1: An overview of well known biometrics, structured by their body
region or type [62].

2.4.1 Fingerprint

One of the most common biometrics used for authentication or identification
are fingerprints. The discriminative nature of fingerprints has been known
for more than a century. Usage is widespread and across several domains,
from identification in forensic science, to authentication for access control
on laptops. The ridges and valleys of the epidermis form a unique pattern
of arches, loops and whorls. According to the study conducted by Unar,
Seng, and Abbasi [62], most of the commercially available systems use fea-
tures derived from characteristic points of the fingerprint, so called minutiae
points. The traditional ink pad for fingerprint acquisition has been replaced
by different sensors like optical, thermal, silicon or ultrasonic imaging sen-
sors. Usage is widespread and generally accepted, e.g. in passports issued
by the European Union since 2009 [84]. The sensors are small can be imple-
mented easily into mobile devices. Availability of fingerprint biometrics can
be considered as good, although it might not be applicable in some cases.
While the amount of people suffering from adermatoglyphia – an extremely
rare genetic disorder causing persons to have no fingerprints [69] – or with-
out fingers are exceedingly small, regular conditions like wet, dry or unclean
skin, scars, cuts, dead cells, skin or hand diseases, wrinkles, hard skin, etc.
challenge fingerprint authentication. Data recording usually requires the fin-
ger to be placed on a sensor. Physical contact between skin and fingerprint
sensor during acquisition might cause an oily or dirty sensor surface and
distorted sensor readings.

Although fingerprints are easily acquired and counterfeited from surfaces
that previously have been touched or high resolution cameras, fingerprints
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are considered to offer a high level of security. They are used for identification
and authentication on a personal, company and governmental level, since
fingerprints are recorded and stored with the passport. Sensors are small
and can be implemented in mobile devices. Current implementations are
suitable for frequent authentication, but not for continuous, uninterrupted
use. Systems are reported to achieve a false rejection rate (FRR) of 1-20%
and a false acceptance rate (FAR) of 0.001-5% [10], depending on the desired
purpose, data and system and evaluation setup.

2.4.2 Voice

Another prominent biometrics used for authentication is voice or language.
It belongs to the group of behavioral biometrics, although the human vocal
tract is a physiological feature. This is because not the vocal tract itself is
compared for authentication, but the voice or language recorded over time.
It is easily captured with microphones, prevalent in smartphones and other
mobile devices. Usually, acoustic models are used to extract information and
sound of speech samples. Features are derived either from the voiceprint of a
subject, or from phonetic or phonological properties. While voiceprint, a plot
of frequency over time with additional intensity information and phonetics,
a branch of linguistics both are concerned with the sound of the human
speech, phonology deals with the systematic organization of sounds in lan-
guages [71]. However, Bonastre et al. [8] mention that, although the name
voiceprint suggests otherwise, it has nothing to do with a fingerprint. Other
than fingerprints, human voice is subject to constant change. It changes with
the time of the day, as well as with the time of the year or with age. It is
also influenced by the speakers health or emotional state and can even be
disguised on purpose. Although Unar, Seng, and Abbasi [62] attest voice
biometrics an accuracy level of more than 90%, the performance of voice
authentication certainly is a lot smaller compared to fingerprint or other
biometrics. Voice biometrics are commonly used in multimodal authenti-
cation systems, where they can add additional features to the system and
improve authentication performance. Very unobtrusive data recordings, in-
expensive hardware and high user acceptance [16] make voice biometrics an
excellent choice for extending existing frameworks.

2.4.3 Face

The face is the primary biometric characteristic used by humans to recog-
nize each other [16] and one of the most versatile and powerful biometrics.
In their survey, Abate et al. [1] state that face biometrics are the second
most used biometrics after fingerprint and mention that, contrary to finger-
print, no consent is required for recognition tasks. The face can be recorded
from a distance, e.g. by closed circuit television (CCTV), unnoticed and
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without consent of the individual. Therefore, face recognition is not only
used for authentication, but also for surveillance and tracking. This is also
a possible threat for face authentication systems, as attackers could gain
unauthorized access to pictures or 3D models of faces and conduct spoofing
attacks. There is a wide variety of face recognition approaches, including 2D
and 3D based systems, where data is acquired from still images or image
sequences in visible light or infrared spectrum. Zhao et al. [66] divide face
recognition systems into holistic approaches, and feature based approaches.
While feature based approaches extract fiducial features like eyes, nose and
mouth from the face, holistic approaches like eigenfaces [59, 61] extract fea-
tures from the whole face, e.g. by performing transformations like principal
component analysis (PCA) or discrete cosine transform (DCT). Most face
recognition technologies use footage from regular cameras like smartphone or
surveillance cameras. As hardware is already available in most off-the-shelf
mobile phones, it is only a matter of software updates to globally distribute
face authentication systems onto mobile devices. Over different approaches
and datasets, an average accuracy level of 95% is reported in [62]. But au-
thentication performance is highly dependent on the selected technology, use
case, setup and data and conditions like illumination, facial expression or
angle and the system’s ability to cope with those changes. Usability of face
authentication depends on the selected approach. For some approaches, no
user interaction beyond regular use of a smartphone is required [1], others
depend on moving a camera around the face to acquire a 180° pan shot [20]
or challenge-response procedures such as pose or gaze estimation [2, 12, 22].
Face recognition can be considered as minimal invasive and socially accepted
[16].

2.4.4 Eye

Together with retina and sclera vein patterns, iris patterns form the group
of ocular biometrics. While they are located very close to each other, the
recording procedure as well as their field of use are distinct from one an-
other. As depicted in figure 2.2, sclera and iris lie on the outside of the
eye and therefore can be recorded in the visible spectrum of light, e.g. with
a smartphone camera. Recording is no more intrusive than taking a selfie.
The retina lies on the inside of the eye, which makes recording more difficult.
The eyeground needs to be illuminated with infrared light and the camera is
located right before the eye. The close distance is determined by the diam-
eter of the pupil and the area of the retina that should be recorded. Retina
scanning is comparatively intrusive, needs special equipment and therefore
usage is limited to military and similar purposes. The inconvenience and
intrusiveness of data recording is disadvantage and strongest asset at the
same time. It is very hard to gain unauthorized access to one’s retina and
nearly impossible to remain unnoticed in doing so. Images of iris or sclera
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Sclera

Iris

Retina

Figure 2.2: Illustration of a human eye, adapted from [80]. Sclera (the
white part of they eye), retina (the light sensitive tissue in the rear of the
eye) and iris (the colorful structure around the pupil) are commonly used for
authentication.

can be obtained comparatively easy with high resolution cameras over a dis-
tance of several meters. Iris and sclera systems have to deal with different
lighting conditions and reflections, but as long as the eye is clearly visible,
even glasses or contact lenses do not negatively affect accuracy, according
to Weaver [63]. Still, ocular biometrics are considered to be very secure, as
they don’t change considerably over time, offer a high level of uniqueness
and accuracy levels of more than 99% [62].

2.4.5 Gait

Another biometric with advantageous properties is gait. It belongs to the
group of behavioral biometrics and can be divided into approaches based
on either acceleration or video recordings. Video based experimentation se-
tups require cameras observing an area, where gait recognition should be
performed. Lee and Grimson [41] present an approach using an orthogonal
camera setup. As they rely on a static camera infrastructure, video based
systems are not usable for mobile or continuous use and therefore mainly
restricted to surveillance purposes. Accelerometer based systems are bet-
ter suited for mobile and continuous use because they are more flexible
and available, as most smartphones already have accelerometers included.
Accelerometer based gait recognition is unobtrusive and socially accepted
[16]. Muaaz and Mayrhofer [49] further divide accelerometer based systems
into cycle based segmentation and fix length segmentation approaches. Cycle
based approaches extract features from one or several cycles, while fix length
approaches extract features from segments of fixed size. The extracted fea-
tures are then subject to either template matching or stochastic/machine
learning classification. Unar, Seng, and Abbasi [62] estimate the accuracy
level of gait recognition to more than 90%, but mention that behavioral
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attributes such as gait don’t contain sufficient discriminatory information
for reliable authentication. This is because they are affected by emotional
state, health conditions, dietary habits and aging conditions. Additionally,
according to Unar, Seng, and Abbasi [62] “identification based on behav-
ioral biometrics is not beyond doubt since mimicking human behavior is
easy for an experienced and skilled impostor”. Nevertheless, behavioral bio-
metrics can additionally add to security and usability of a system, e.g. as
part of a multimodal biometric framework. Each additional biometric trait
increases the key space and therefore increases the effort necessary for suc-
cessful brute force attacks. Furthermore, the effort for spoofing attacks is
increased, as additional biometric traits need to be mimicked. Security is
enhanced, as additional biometrics add confidence in the result. User expe-
rience can be improved by lower response times due to short circuit evalua-
tion, e.g. in identification use cases, behavioral biometrics can significantly
reduce search space for potential matches.

2.4.6 Keystroke

A lot of research has been conducted in the field of keystroke dynamics. Sim-
ilar to other behavioral biometrics, it offers high usability but low security.
Keystroke dynamics recognition systems can be divided into systems that
use static sentences and systems that perform authentication on dynamically
changing text. Features derived from keystrokes include key hold and inter-
val times, key press and release latencies [6] for static sentence approaches
with physical keyboards. Systems that continuously capture user input from
touch screens have even more features at their disposal, including the area
occluded by the finger, pressure applied on the screen, gesture acceleration
and velocity and many more [21]. For traditional, one time authentication
for system access with a static sentence, as proposed by Balagani et al.
[6], keystroke is considered not sufficiently secure [16, 45]. The gain in us-
ability compared to password authentication is limited to not having to
remember the password. In contrast, Bours [9] presented an approach that
continuously captures text input by the user and unobtrusively performs
user verification in the background. As soon as an intruder is detected by
a change in keystroke dynamics, the system is locked and the attack is in-
terrupted. The proposed system neither reduces usability, as keystrokes are
captured continuously and no user interaction is required, nor security, as
initial authentication is performed by another, more secure authentication
technology. It can be considered as extension to existing authentication sys-
tems, unobtrusively improving security.

Bours [9] introduced another concept, called “concept of trust”. Thus,
negative authentication results don’t instantly initiate the system to be
locked. The system is only locked, if a trust level falls below a predefined
threshold. Positive authentications add to the trust level, while negative au-
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thentications decrease the level of trust. The threshold can be tuned to meet
desired FAR and FRR. While keystroke dynamics relate more to desktop
computers than to mobile devices, this principle is applicable to smartphones
or other devices as well [4, 5, 23], although most likely different features need
to be selected. For acquisition of keystroke dynamics and similar behavioral
traits, no sensors are required, as the observed behavior is the interaction
between user and system. Therefore, keystroke dynamics are highly unob-
trusive user friendly and can be applied continuously.

2.4.7 Others

As shown in figure 2.1, there are many more biometric traits. In the following
section, we mention some remarkable biometrics.

Signature

A fairly widespread, yet inconspicuous biometric is the handwritten signa-
ture. It has been used to sign documents, letters and contracts long before
authenticity could be determined algorithmically. Baltzakis and Papamarkos
[7] propose a system for signature recognition that is capable of correctly
verifying 90% and identifying 80% of the signatures within a database of 115
individuals. The database contains a certain level of variation within each
class, but no attempts were made to counterfeit signatures. Features include
global statistics like height, width, number of edge points, cross points and
closed loops, slant angle, as well as the grayscale values of the bitmap and
statistical features regarding the occurrence of certain pixel sequences within
a section of the signature image. While behavioral biometrics should not be
trusted with positive authentication results, a negative authentication result
could be reason for a more thorough examination of authenticity over dif-
ferent channels. The vulnerability to counterfeits might could be decreased
using a real time requirement, but skilled impostors could still study and
mimic the signature.

DNA

To the best of our knowledge, DNA is the most powerful biometric trait avail-
able. Except for identical twins, it is highly unlikely to find two individuals
with the same DNA. Although people share about 99.9% of DNA, accord-
ing to Korte et al. [37] the remaining 0.1% contain several megabytes of
discriminatory information. Data is extracted from cells that contain DNA,
such as skin, oral mucosa or the root of a hair. As it is impractical to exam-
ine the whole sequence of base pairs for recognition, most commonly Short
Tandem Repeats (STR) are used. STRs are arrays of 5-50 repeats of 2-6 base
pairs called motif. Those STRs are located on several 100,000 loci. About 20
loci are used in forensic science to identify individuals. In contrast to other
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biometrics, familiar relationships can be derived from similarities in DNA.
The system presented in [37] encodes the extracted features with an error
correcting code and is claimed to reach an FAR as low as 𝑚 · 2−73, where
𝑚 is the number of enrolled individuals, and a FRR of 0.4%. As it is not
possible to perform DNA recognition in real time, practical application is
limited to forensics and criminalistic purposes.

Soft Biometrics

A very natural and intuitive way to distinguish people from one another is
using soft biometrics. They include properties like gender, ethnicity, body
height and distinguishing marks like scars, marks or tattoos, as shown in
figure 2.1. Although a single property is unlikely to reliably distinguish in-
dividuals, a set of soft biometrics within a limited population has a certain
discriminating power. Their significance and reliability are highly dependent
on, selected features, feature probabilities and population size and therefore
cannot be generalized. However, Reid et al. [54] mention that soft biomet-
rics are obvious properties of individuals. They typically can be obtained
from a distance and described by human understandable labels. Acquisition
is nonintrusive and doesn’t require consent. Therefore soft biometrics are
commonly used for automated or manual surveillance and tracking purposes
[54]. Furthermore, Unar, Seng, and Abbasi [62] state that soft biometrics can
significantly improve performance of biometric authentication systems, es-
pecially in time constraint systems, by narrowing down the search space,
e.g. if gender is taken into consideration in an identification application,
about 50% of search space can be immediately removed. As soft biomet-
rics are visual properties, they can be extracted from photographic or video
footage.

ECG

Electrocardiogram is a well known technology for medical examination of
the cardiovascular system and is explained in detail in chapter 4. It is the
function of the electrical potential of the heart over time and is acquired
as an electrical signal from the skin surface. The waveform depends on the
individual physiology and has been shown to be a discriminative biometric
property between people in many different studies [3, 18, 24, 29, 40, 44, 51,
56, 57]. Capturing ECG signals can be considered nonintrusive, as it can be
integrated seamlessly in the normal use case of many systems, e.g. capturing
the electrical signal while touching and holding a smartphone. Additionally,
a continuous, uninterrupted ECG signal serves as liveliness and intruder
detector. In section 4.4.4 some promising results documented in literature
are presented.
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Figure 2.3: Illustration of estimated security and intrusiveness of common
biometrics, based on [16, 52, 62].

2.5 Summary of Well Known Biometrics
The above mentioned authentication approaches use some of the most com-
mon behavioral and physiological biometrics. Each technology is a trade-
off between intrusiveness, fraud resistance and authentication performance.
Figure 2.3 illustrates the estimated tradeoff and relations of intrusiveness
and security of commonly known biometrics. The security estimation de-
picts the potential of biometrics, rather than the performance of specific
approaches and is based on and combines the information presented in [16,
52, 62]. The level of intrusiveness of biometrics depends on the mode of
interaction between user and system and can highly differ between differ-
ent approaches within the same biometrics. We therefore ranked biometrics
according to [45] and the best of our knowledge. Behavioral biometrics are
thereby found to be the least intrusive, as typically very common behavioral
traits are captured for classification. In the case of accelerometer based gait
recognition, no explicit user interaction is needed at all, besides carrying a
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device in the trouser pocket. Voice recognition requires rather intuitive, ver-
bal interaction, but might not be applicable at all times or in all situations.
Fingerprint recognition is judged to be about equally usable than face and
iris/sclera recognition, but it might not be usable for continuous use. For
many use cases of iris/sclera recognition, such as authentication on a mobile
device, the intended use of the device already requires a mode of interaction
between user and system, that allows for seamless integration of authentica-
tion processes. For example, we define the intended use case of smartphones
to be held by users, looking at the screen from short distances of about
0.5 m at angles of approximately 90°. Within this mode of operation, the
users iris/sclera could be continuously captured.

Physiological biometrics are by trend located on the more secure but
less usable side if the chart. In general, security and usability of biomet-
rics seem to be inversely correlated. When employing single biometrics for
authentication, decisions have to be made between security and usability.
Although ECG recognition is a relatively new idea, research conducted in
the past decade [51] gives reason to believe that ECG recognition can pro-
vide usable yet secure biometric authentication. By increasing usability and
security, ECG authentication can contribute to user acceptance of biometric
authentication systems by eliminating “inconvenience” as the main reason
for not using secured unlocking mechanisms [26]. However, most compara-
tive studies and surveys do not include ECG authentication. Therefore, we
used the results of the works presented in chapter 4 for our security estimate
presented in figure 2.3.

2.6 Template Protection
Biometric authentication is able to positively influence digital security by
making security usable, but simultaneously introduces some issues that need
to be addressed. In order to evaluate authenticity of users, biometric tem-
plates need to be stored and compared to probes. Whenever data is stored,
there is a chance unauthorized people gain access to this data. In the past,
major companies have been subject to cyberattacks and hundreds of mil-
lions of datasets, in some cases containing personal information such as
email, name or even passwords have been stolen [70]. It is strongly rec-
ommended not to reuse passwords on more than one system, program or
website. When biometric authentication technologies are employed, we face
several challenges. Breebaart et al. [11] state that unlike a PIN or password,
our biometric characteristics are not renewable. If an attacker gains access
to stored biometric features, spoofing attacks can be conducted.

Furthermore, as biometrics represent personal information, privacy con-
cerns arise. One of the main benefits of biometric authentication - to rather
link an account to a person than to a PIN - could turn out as a privacy
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threat. Due to the distinctiveness of biometric features, attackers could link
accounts across different, e.g. financial services and gain detailed insight into
financial condition or investment plan of the customer. Besides, biometric
data could contain sensitive, personal information like gender, age, ethnic-
ity, etc., that could be used to acquire the identity of a person. Biometric
data could also contain medical information and disclose medical conditions
or risks for certain diseases, which could be used by health insurances to
calculate insurance rate. Any leaked biometric data adds detailed, personal
information to knowledge bases of countries, companies, intelligence services,
criminals or other entities and can be used in any favorable or non-favorable
way. Therefore special caution is advised when dealing with biometric infor-
mation.

For the named security and privacy issues, it is advisable to prevent any
conclusions from stored biometric data to identity or biometric character-
istics of a person and to provide confidentiality, integrity and revoke- and
renewability of biometric templates. In [11], the concept of Trusted Biometric
Systems (TBS) is outlined and the need for an open standard for biomet-
ric template protection is emphasized and the meanwhile released standard
for biometric information protection, ISO/IEC 24745:2011 [28] is referenced.
When considering the use of biometric information within an application or
system, it is advised to comply with this norm. Jain, Nandakumar, and Na-
gar [30] summarize and compare existing approaches for biometric template
protection and conclude that there is no single best method for template
protection, but that it depends on the use case and the selected biometric
trait which approach serves best in securing biometric data.

While we won’t go into further detail about biometric template protec-
tion, as it is outside the scope of this work, we acknowledge and emphasize
the need for suitable template protection in every biometric authentication
system.



Chapter 3

Building Blocks

Before we go into the details of ECG authentication in chapter 4, a short
overview of tools frequently used for biometric recognition and authentica-
tion is provided in this chapter.

3.1 Distance Functions and Similarity Metrics
Distance functions are a tool commonly used for similarity metrics in tem-
plate matching or to acquire difference vectors for classification. Some of the
most common distance functions are presented below.

3.1.1 Euclidean Distance

Euclidean distance is one of the most common distance measures. In n-
dimensional space, it is defined by the equation

𝑑 =

⎯⎸⎸⎷ 𝑛∑︁
𝑖=1

(𝑞𝑖 − 𝑝𝑖)2

as the metric distance between two vectors. Note that Euclidean distance
is sensitive to scaling and shifting and emphasizes large values. For large
vectors the distance is also large. Therefore normalization should be taken
into consideration.

3.1.2 Manhattan Distance

Manhattan distance, also known as taxicab geometry is defined as the sum
of absolute differences of their Cartesian coordinates. It is defined as

𝑑 =
𝑛∑︁

𝑖=1
|𝑞𝑖 − 𝑝𝑖|

16
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Figure 3.1: Minimal Manhattan distance between points A and B is de-
picted by the solid line. The dotted line shows minimal Euclidean distance.
Minimal Manhattan distance is 2 units, while minimal Euclidean distance is√

2 units.

in n-dimensional space. Figure 3.1 illustrates the minimal Manhattan dis-
tance between two points. It is similar to a taxicab driving in the streets
of Manhattan that has to stick to the roads instead of crossing diagonally
through the buildings.

3.1.3 Hamming Distance

Different to Manhattan and Euclidean distance, Hamming distance is not a
geometric, but more a logical distance measure. It is defined as the number
of positions, where the values of two vectors of equal length are different
from each other. It is frequently used in coding theory for error detection
and correction, but also as distance metric for classification, e.g. a sample 𝑥
belongs to a class 𝑦, if less than 𝑧 features of 𝑥 differ from the class template
of 𝑦.

3.1.4 Cosine Similarity

Cosine similarity depends rather on the orientation i.e. the angle between
two vectors, than their magnitude and therefore is invariant to scaling. It is
defined as

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑎𝑏 = 𝑐𝑜𝑠(𝜃𝑎𝑏) = 𝑎 · 𝑏

|𝑎| · |𝑏|
and evaluates to 1, if the vectors are parallel, 0 if they are orthogonal and
-1 if they are diametrically opposed.
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3.2 Classification Models
When class membership should be predicted based on previously made ob-
servations, classification models can be employed. After selection and ex-
traction of problem dependent features, classification models are trained on
existing data to learn relations between selected features and class member-
ship to predict. For authentication, machine learning classifiers are employed
to predict the probability of ECG probes to belong to the same user than
ECG patterns stored in a database. Some of the most common classifiers
used in ECG recognition are mentioned in this section.

3.2.1 k-Nearest Neighbors

The k-Nearest Neighbors (KNN) algorithm is used for classification as well as
for regression. It is an instance-based, lazy learning algorithm, i.e. it doesn’t
make any generalization or abstraction, but it is constructed based on the
samples of the training data, as explained in [39]. Classification of probes
is based on class membership of samples - so called neighbors - which are
located next to the probe in feature space. For regression, the predicted value
for a sample is calculated by a summary statistic, such as mean or median of
the 𝑘 nearest neighbors. For the distance metric, most commonly Euclidean
distance is used, but can be replaced by other distance metrics, such as
Manhattan, Hamming, etc. As the output of KNN depends on a distance
function, it is necessary to scale and center the features. Otherwise, features
with large scales or off the center would contribute more to the result than
features with small scales. If for some samples features are missing, the
distance cannot be calculated. Incomplete features either can’t be used or
have to be interpolated.

When KNN is used for classification, the 𝑘 closest samples in feature
space are used to estimate the probability for class membership. If multiple
classes have the same probability, the 𝑘 + 1𝑡ℎ neighbor is used or the class
is selected randomly.

When tuning parameter 𝑘 is selected very small, KNN can divide feature
space into arbitrarily complex sections and is prone to overfitting. If 𝑘 is
selected too large, the boundaries may not represent the real complexity. As
𝑘 is the only tuning parameter and 𝑘 is a positive integer, a grid search for
optimal tuning parameter is comparatively fast and easy and doesn’t require
expert knowledge on the classifier.

3.2.2 Nearest Center

Another common classifier used in literature is the nearest center or centroid
classifier. Similarly to KNN, it is a distance based approach. The mean of
all samples that belong to the same class is calculated for every feature. The
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mean values of all features form a centroid. Each class is represented by only
one centroid. A new sample is classified by assigning the class label of the
centroid located next to it. Nearest center classifiers split the feature space
linearly, which means they are only applicable, if the classes are linearly
separable.

3.2.3 Linear Discriminant Analysis

LDA is a technique commonly used for dimensionality reduction and clas-
sification. According to Kuhn and Johnson [39], Fisher sought to find the
combination of predictors that maximize the separation between classes in
1936. In 1939, Welsh was looking for a method to minimize the probabil-
ity of misclassification. Eventually, both ended up in the same conclusion.
LDA finds a linear hyperplane, that optimally separates two classes from
each other. Additionally, it can provide valuable information of the relative
importance of predictors, when looking at the linear discriminant function
coefficients.

While LDA is capable of finding an optimal solution, it’s performance
strongly depends on two preconditions. The number of samples has to be
larger than the number of predictors. In [39], the ratio is specified by at least
5 to 10. It should be noticed, that resampling techniques like cross validation
reduce the sample size by a certain factor. For 10-fold cross validation, the
number of samples should therefore exceed the number of predictors by at
least a factor of 50 to 100. Besides, the predictors should be uncorrelated. For
best performance, it is a common practice to use PCA to receive uncorrelated
predictors before applying LDA. It is recommended to center and scale the
data. Once these requirements are met, LDA is an easy to use linear classifier.

3.2.4 Neural Networks

Neural networks (NN) are powerful, nonlinear (for NNs consisting of more
than one neuron) algorithms for both regression and classification. Their
design is inspired by the very neurons in the human brain. While the human
brain consists of about 1012 neurons, the simplest artificial neural network is
called “perceptron” and consists of only one neuron. Each artificial neuron
consists of components to receive information from other neurons, process
this information and transmit it to other neurons. Although the theory of
NN dates back to 1943 [47], they only became relevant with the rise in
computational power during the past decade.

NNs belong to the class of supervised learning algorithms. When a per-
ceptron is trained for regression, an input vector is passed to the neuron.
The information is processed by multiplying each element of the input vector
with a corresponding weight from a weight vector. The weights are initialized
randomly. The weighted input signals are then summed up. The resulting
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Figure 3.2: The main components of an artificial neuron.

value is then passed to an activation function, commonly a sigmoid or recti-
fied linear unit function. During the learning process, the predicted number
is compared to the real value. Depending on the error, the weights are tuned
until predicted and reference value match. In more complex NN topologies
consisting of more than one neuron, typically arranged in layers, the error
is propagated to all neurons and the weights are tuned accordingly.

If NNs are used for classification, the topology diverges slightly. The
hidden layers still calculate continuous values from inputs and weights, but
after the last layer, an additional output function (e.g. sigmoidal) is used.
For every class, there is one output neuron that outputs a value between 0
and 1, which must not be mistaken as class probability, as the values do not
add to 1.

NNs are rather complex algorithms with several tuning parameters. Their
complexity and power rises with the number of layers in a network and neu-
rons per layer. Large networks are able to perfectly adjust and give optimal
results for training data, but therefore are prone to overfitting. Tuning pa-
rameters include network topology, numbers of layers, neurons per layer and
activation functions. Furthermore, the learning rate can be tuned, i.e. the
rate every neuron adapts its weight to the overall error to ensure even dis-
tribution of learning, as otherwise during backpropagation the last layer,
where the error is maximal, would learn the most. To reduce overfitting,
large weights can be penalized by a weight decay. Neural networks are very
powerful classifiers, but either require expert knowledge or exhaustive search
for appropriate hyperparameters to be tuned accordingly.

3.2.5 Support Vector Machines

Support vector machines (SVM) are algorithms for classification and regres-
sion not only popular for authentication tasks, but considered as one of the
most flexible and effective machine learning tools [39]. Unlike many other
approaches, SVMs are not iterative, but solve equations. For classification,
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a hyperplane is fitted between the samples to linearly separate the classes
from each other, maximizing the distance. SVM is called a large margin
classifier. If two classes are not linearly separable, they are projected into
higher dimensions, where they possibly can be separated. Because of the
implementation details of SVM, the use of the so called “kernel-trick", the
computational costly dimensional transformation never has to be executed.
This is accountable for the fast training of SVM.

Instead of determining an arbitrary solution, SVMs always find the global
optimum. As a classifier that allows for no errors during training and classi-
fies every training sample correctly is very likely to overfit, SVM features a
cost parameter 𝐶. A small 𝐶 allows a higher rate of misclassifications during
training, which might lead to a simpler, possibly underfit model. Additional
tuning parameters are introduced by different kernels, such as radial basis
function (RBF), Gaussian, linear, sigmoid, polynomial and other kernels. For
optimal fit, parameter grid search with cross validation is recommended.

3.2.6 Generative Model Classifiers

Some authentication approaches use different generative model classifiers
(GMC). Instead of modeling the relationship between the observed variables
and the target variable (discriminative models), they model the relationship
between all variables, i.e. such a model is not only capable of predicting
a target variable, but generating new samples. Therefore, GMC could be
used to extrapolate data from small datasets. Some examples are Gaussian
mixture, hidden Markov and naive Bayes models.

3.2.7 Other Classification Approaches

Sometimes authentication is performed by simply extracting a score, e.g.
by cross correlation, similarity or dissimilarity between sample vector and
template vector, and comparing it to a threshold. Authenticity is granted, if
similarity is above or dissimilarity is below a certain threshold. For identifica-
tion, the template that results in the highest similarity or lowest dissimilarity
score is associated with the sample.

3.3 Others
Some tools and terms are frequently used throughout this thesis, but match
non of de above categories.

3.3.1 Tuning Parameters

Classification models typically have one or several tuning or hyperparame-
ters, specifying the learning behavior of the model. Those parameters depend
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on problem, data and classification model and need to be specified for every
application. Selection of appropriate values for tuning parameters is impor-
tant for adequate model generalization. If inappropriate values are selected,
classification models might over- or underfit training data and therefore
won’t perform well on real world data.

3.3.2 Parameter Grid Search

One technique of finding appropriate values for tuning parameters is pa-
rameter grid search. The goal of parameter grid search is to find tuning
parameters, which lead to proper generalization of the model. Classification
models are trained and validation results are compared for different values of
tuning parameters within the respective typical ranges. For more than one
tuning parameter, permutations of different values per parameter need to
be evaluated, resulting in 𝑛𝑝 permutations, for 𝑛 being the number of values
tried out per parameter, and 𝑝 being the number of parameters. When typ-
ical ranges of certain tuning parameters are unknown, it might be advisable
to try powers of ten, e.g. from 10−5 to 105. Once the order of magnitude is
known, optimal parameters can be found by stepwise refining the parameter
grid.

3.3.3 Gallery Dependence

The available data for model training is usually limited and sometimes real
world data is not available at all. Models are therefore trained on data
recorded under different conditions than real world data. This might lead
classification models to work well on the training data, but fail to correctly
predict classes under real world conditions. Such a model is called gallery
dependent. In order to achieve a gallery independent model, training data
should contain the same amount of variance than real world data. Further-
more, it is recommended to shuffle the data before data partitioning is done.
This way, any bias that was introduced within the recording session is ran-
domly distributed over training, validation and test partitions and therefore
affects the model less gravely.

3.3.4 Principal Component Analysis

Principal component analysis (PCA) is a statistical procedure commonly
used for dimensionality reduction technique in the machine learning domain
[33]. It uses orthogonal transformation, that turns a set of possibly corre-
lated variables into a set of uncorrelated variables of equal length 𝑚. This
transformation is reversible, as no information has been lost. It can be con-
sidered as another representation of the same information. However, the set
of variables after transformation has the same length or dimension as the
original set. Dimensionality reduction is only introduced, when removing
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variables from the set. As we want to reduce dimensions or variables from
the set without losing all the information contained, they are not removed
arbitrarily. The transformation results in a set of variables ordered accord-
ing to the variance they represent. The first dimension contains the most
variance, while every subsequent dimension contains as much variance as
possible, given that it is orthogonal to previous dimensions. Therefore it
is possible to represent arbitrary amounts of original variance in 𝑛 ≤ 𝑚
dimensions.

PCA provides two main benefits. First, dimensionality reduction is very
useful, as it facilitates all calculations. Furthermore, the amount of data
required for model training 𝑙 is reduced, as 𝑙 >> 𝑛. Second, PCA provides
uncorrelated variables, which is beneficial for classification, as correlated
variables don’t add information to models and increase 𝑙.



Chapter 4

ECG as Biometric

In chapter 2, we discussed the capabilities and limitations of state of the
art authentication technologies and the need for new authentication meth-
ods arising from the unsatisfactory security/usability tradeoff of traditional
methods and well known biometrics. In the following chapter, based on the
need for secure yet usable biometrics that allow for continuous authentica-
tion, we describe ECG as biometric in detail. We start with the properties
of ECG waves and proceed with ECG recording methods. Finally, several
ECG authentication approaches are presented and evaluated.

4.1 ECG Wave

4.1.1 Characteristics of ECG Waves

An ECG wave depicts the electrical potential of the heart over time [3].
Figure 4.1 shows a schematic of an ECG wave. Each ECG wave represents
the activity during one heartbeat. They consist of and can be divided into
segments. Each segment of the wave corresponds to one phase of the heart-
beat. The amount of heartbeats per minute is commonly known as heart
rate or pulse. The duration between consecutive heartbeats is known as RR
interval. For healthy people, the meantime between consecutive heartbeats
varies even at resting conditions. This is known as heart rate variability
(HRV) and depicted in figure 4.2.

P Wave

The heartbeat is initiated by the sinoatrial node, the pacemaker of the
heart. It spontaneously generates an electrical impulse that, upon propa-
gation through the heart, causes the cardiac contraction. The P wave typi-
cally has a duration of less than 120 ms and a spectrum of 10 Hz to 15 Hz,
according to Agrafioti and Hatzinakos [3] and Yanowitz [86].

24
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Figure 4.1: Schematic diagram of normal sinus rhythm for a human heart
as seen on ECG from [68].

736 802 800 721 722 760

Figure 4.2: Illustration of a healthy ECG from [85]. RR intervals are stated
in milliseconds. The heart rate varies.

QRS Complex

After the P wave, usually three consecutive peaks can be observed. The Q, R
and S waves correspond to the depolarization of the ventricles, that initiate
the contraction of the heart. As depicted in figure 4.1, the downward Q wave
precedes the upward R wave, followed by the downward S wave within about
100 ms. The QRS complex has a spectrum of 10 Hz to 40 Hz [3].

T Wave

Finally, repolarization of left and right ventricles correspond to the T wave.
It has a duration of about 160 ms and it appears 80 ms to 120 ms after the
QRS complex, depending on the heart rate. Agrafioti and Hatzinakos [3]
state that, the ST segment is shorter for higher heart rates.
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4.1.2 Long Term Changes in ECG Pattern

As the ECG pattern reflects the individual anatomy, it is subjected to a
continuous change. Changes in the ECG can be traced back to two main
factors. Firstly, the normal process of growing and aging leads to changes
visible in the ECG. Secondly, cardiovascular conditions have an immediate
effect on the ECG.

Childhood to Adolescence

Carmona et al. [13] observed the development of ECG over a five year period.
In 2002, samples of 52 participants aged 19 were taken. In 2007, recordings
were repeated on the same group of participants, now aged 24. The study
shows a decrease of HRV from early age on. A decrease of HRV can be
linked to a loss of complexity of the cardiovascular dynamics [43]. Women
and persons who don’t practice sports are more affected than men and people
who practice sports.

Singh and Gupta [58] conclude, that changes to the ECG due to aging
are not consistent. Generally, the heart rate decreases, causing the P wave,
QRS complex and PR interval to increase in duration. While the amplitude
of the P wave remains consistent over years, the amplitudes of R and S
waves decrease.

Advanced Age

The progressive changes in anatomy that affect the ECG mainly happen
during childhood and adolescence. Changes of the ECG amongst elderly
people often indicate cardiac disorders. Khane, Surdi, and Bhatkar [34] con-
ducted a study with 400 participants aged 45 to 74, all apparently healthy
and asymptomatic. 38% of participants showed ECG abnormalities, and
prevalence increases with age. The most common abnormalities are left axis
deviation (a condition where the mean electrical axis of the heart is mis-
aligned), sinus bradycardia (a lower than normal heart rate), bundle branch
block (a disorder of the electrical conduction system of the heart) and ST-T
wave abnormalities.

Aging and ECG Authentication

The effects of aging and disease change the ECG considerably. In the ECG
authentication toolchain, a change of the ECG pattern would affect the pro-
cess of feature extraction. Depending on the selected features, aging effects
potentially have an negative effect on the classification performance. Differ-
ent features and feature extractors will be explained and discussed in 4.3.
Extractors that rely on the amplitude, position, sequence or interval of ECG
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waves are especially prone to abnormalities such as bundle branch block or
premature ventricular contraction.

However, the concept of continuous authentication allows for a certain
adaptability to long term changes. The repeated authentication reduces the
impact of a discrete event caused by cardiac conditions, such as a skipped
heartbeat. Furthermore, online learning could be introduced to biometric
authentication algorithms. Successful authentications could be added to the
positive class, while old samples could be removed from training set after a
decay period. This would allow an adaption to long term changes.

4.1.3 Short Term Changes

Multiple factors can influence the ECG, including physical or mental stress,
ambient temperature, medical condition, emotional states, etc. In this sec-
tion, we are going to discuss the effect of physical and mental stress and
medical conditions.

Physical Stress

According to Whyte and Sharma [64], physiological stress caused by exercise
generates a multitude of responses in the ECG wave. Physical stress leads
to an increase in heart rate, with a linear relationship between heart rate
and workload. As the duration of the systole (the contraction of the heart)
remains constant at about 300 ms, the duration of the diastole (the relax-
ation of the heart) varies and decreases with increasing heart rate. Further
changes of the ECG include changes in amplitude of the P wave, increase
in Q wave amplitude, increase in R wave amplitude during medium stress,
decrease of R wave amplitude during maximal stress, shortening of QRS
complex, changes in T wave and ST segment, decrease of QT interval, as
well as superimposition of P and T waves of consecutive beats.

Mental Stress

Taelman et al. [60] studied the effect of mental stress on heart rate and HRV.
The autonomic nervous system consists of the sympathetic and parasympa-
thetic nervous system. While sympathetic activity leads to an increase in
heart rate, e.g. during sports exercise, parasympathetic activity lowers the
heart, e.g. during sleep. The constant interaction of both systems is repre-
sented by heart rate variability. When a person is exposed to mental stress,
the parasympathetic nervous system is suppressed and the sympathetic ner-
vous system is triggered. Stress hormones such as epinephrine and nore-
pinephrine are released, inducing a ’fight-or-flight’ reaction. As a reaction to
the hormones, the blood vessels contract, resulting in higher blood pressure.
Also muscle tension increases and heart rate rises.
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It is concluded that, when exposed to mental stress, subjects show an in-
creased heart rate and a decreased HRV. Although subjects react differently
to particular stress situations depending on age, gender and environment,
24 out of 28 subjects show significantly increased heart rates when exposed
to mental stress.

When frequency analysis is applied to the signals, the subjects show an
increase in the low frequency/high frequency ratio. Low frequency compo-
nents are associated with sympathetic activity, high frequency components
are associated with parasympathetic activity. An increase in the LF/HF
ratio indicates higher sympathetic activity, when exposed to mental stress
[60].

Medical Condition

As the ECG is a widely used noninvasive medical exploration technology,
many medical conditions of the cardiovascular system have an immediate
effect on the morphology of the ECG wave. Depending on the kind and
severity of the condition and the authentication process, medical conditions
could have a negative impact on the authentication performance.

Li and Li [42] mention, that supervised classifiers won’t perform well for
out-of-set testing samples, and therefore for patients with irregular cardiac
conditions. Supervised classifiers would require reenrollment of altered ECG
patterns or robust normalization of biased ECG samples. A system, calcu-
lating the difference between target and test samples and comparing it to
a global threshold is proposed in [42]. Furthermore, beat normalization or
outlier removal is needed.

Short Term Changes and ECG Authentication

ECG authentication relies - like all biometric authentication approaches - on
the identification, extraction and quantification of domain specific features.
Physical or mental stress, as well as environmental factors can influence
the ECG wave. While the morphology of the ECG remains comparatively
constant, the intervals between subsequent pulses are heavily affected [3].
Heavy stress can lead to changes in amplitude of specific waves, or even
superimposition of consecutive beats.

Depending on the feature selection and extraction process, short term
changes potentially could have a negative influence on classification per-
formance, specifically on the false negative rate (FNR). Counter measures
could include adding ECG samples recorded in stress or post stress situa-
tions to the positive class or implementing robust beat normalization and
outlier removal to the system. System design heavily depends on the use
case and the desired false positive/false negative rate.
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4.2 ECG Recording
The first step in an biometric authentication process is data recording. It
is required for both training of classifiers and application of authentication
systems. Typically, ECG signals are captured by applying sensors to the
skin. Recently, sensors emerged that do not require physical contact to the
skin. In this section, some of the mostly used sensors are reviewed.

4.2.1 Resistive Electrodes

Resistive electrodes are simple conductive parts that make contact between
skin and electrocardiograph. They can be divided into wet and dry models.

Wet Electrodes

Traditional, medical ECG mostly uses silver/silver chloride (Ag/AgCl) elec-
trodes. Those medical standard electrodes need some electrolytic gel be-
tween skin and electrode to improve conductivity and therefore are called
wet. For medical ECG, 10 Ag/AgCl electrodes are placed around the chest
and on arms and legs, as shown in figure 4.3. This setup has some severe
drawbacks for authentication purposes. Application of electrolytic gel might
be perceived inconvenient, as it is time consuming and invasive. Electrode
placement around the chest might not be applicable for mobile usage. For
chronic, continuous use, the reliability of wet electrodes cannot be guaran-
teed, as the conductive gel dehydrates over time reducing the conductivity.
Smearing of the gel can cause short circuits between adjacent electrodes.
Once a recording session is in progress, conductive gel cannot be reapplied
without interrupting the record. Furthermore, wet electrodes and conduc-
tive gel are reported to have caused irritations on the skin or even dermatitis
[55]. Additionally, the signal to noise ratio (SNR) is limited by electrode/skin
impedance.

Dry Electrodes

Dry resistive electrodes use the same functional principle, but do not require
any conductive gel, fixing the above mentioned drawbacks. They consist of
conductive materials such as stainless steel, titanium, aluminum or silver
alloys.

The use of dry sensor fundamentally increases flexibility, usability and
user acceptance. Yoo et al. [65] include a set of electrodes in a T-shirt by
directly printing a planar circuit out of silver-based paste on the fabric.
The proposed wearable allows for unobtrusive, long-term ECG monitoring.
Matias et al. [46] use a set of dry resistive electrodes placed on the chest,
along with capacitive body coupled communications, a wireless body area
network to transmit the ECG signal to a portable monitor. Silva et al.
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Figure 4.3: Placement of precordial electrodes around the chest from [74].
Additional electrodes are placed on arms and legs.

[57] integrate two dry Ag/AgCl electrodes into a sensor pad, that is placed
in front of a PC keyboard and measures ECG between both hand palms
while users are typing on the keyboard. Lourenço, Silva, and Fred [44] use
three Ag/AgCl electrodes on a sensor mount to capture ECG between left
and right hand. The positive and ground electrodes are attached to the left
hand index finger, while the negative electrode is connected to the right
hand thumb.

By using dry sensors, ECG can be captured nearly anywhere, anytime,
unobtrusive and unperceived by others. This greatly facilitates the use and
acceptance for both, medical and biometric applications.

However, improved usability comes at the cost of possible drawbacks
in signal quality. The electrolytic gel of wet electrodes works as an shock
absorbing layer between skin and electrode. The lack of this buffer can cause
motion artifacts, i.e. temporary changes of ECG signal caused by motion of
users, as skin impedance varies with motion and pressure of the electrode
on the skin.

4.2.2 Capacitive Electrodes

Other than resistive electrodes, capacitive or insulating electrodes are not
electrically conductive connected to the skin, but rely on capacitive cou-
pling. The surface of capacitive electrodes is covered with a dielectric. Some
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capacitive electrodes are even able to capture the ECG through a layer of
clothing, making the process of ECG capturing even less obtrusive than dry
resistive electrodes. Downsides might be the effect of coupling capacitance
on the ECG.

In [50] and [53], three capacitive electrodes are used in wearables. Two
sensors are placed on the chest, while one is placed above the pelvis. Special
attention is payed in circuit design and component selection, as small size
and low power are very important for on-body systems. The proposed system
provides signal quality comparable to wet ECG and operates through cotton
or wool cloths.

In [14] and [15], capacitive sensors for ECG and electroencephalography
(EEG, recording of electrical activity of the brain) are proposed. The systems
use an off-body design, allowing for more flexibility in system design and use.
The authors report successful ECG recordings through thin shirts as well as
through thick sweaters, allowing for maximum comfort during use.

While on-body systems for ECG data acquisition are well documented,
McDonald et al. [48] propose a stationary system. Capacitive noncontact
sensors are attached to the back of a chair. Subjects only have to sit on a chair
and comfortably lean back, without removal of clothing or preparation of
skin. While this method implements sensors into infrastructure and therefore
doesn’t qualify for ubiquitous use, it offers unobtrusive data recording and
can be implemented into various environments, e.g. offices or cars.

4.2.3 Comparison of ECG Sensors

The above mentioned examples indicate that capacitive electrodes are bet-
ter suited for mobile, continuous use than resistive electrodes, especially wet
electrodes. In terms of convenience, unobtrusiveness and user acceptance, ca-
pacitive electrodes seem to outperform resistive electrodes. However, Searle
and Kirkup [55] conducted a comparative study on the performance of ECG
sensors. In this section, properties of wet, dry and capacitive sensors are
compared based on the findings in [55].

Power Line Noise

One major interference to bioelectrical signals is power line noise, a 50 Hz to
60 Hz noise induced by the omnipresent power supply. Power line noise af-
fects ECG electrodes in two ways. First, capacitive coupling induces voltage
on the leads of the circuit. Generally, nearby leads are similarly affected by
power line noise, so no voltage difference can be measured between them.
But different impedance in two leads, e.g. caused by different skin/elec-
trode impedance leads to a differential voltage interfering with the ECG.
All electrodes are affected by this effect. Second, power line noise is induced
in the human body as a common mode signal. Different contact impedance
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Figure 4.4: Findings of Searle and Kirkup [55] regarding the contact
impedance of different dry electrodes, compared to standard Ag/AgCl wet
electrodes.

leads to a voltage divider effect, causing differential voltage at the electrodes
and therefore interfering the ECG. Counter measures include reducing the
output impedance of the electrodes, as for low impedance the difference in
electrode impedance and therefore the induced voltage difference is also low.
This can be achieved by using active electrodes, buffered by an operational
amplifier with unity gain. Active electrodes still suffer from power line noise,
due to the capacitive coupling on the circuitry before the buffer and finite
impedance of the operational amplifier, but about two orders of magnitude
lower than conventional, passive electrodes.

Impedance over Time

As capacitive electrodes have a constant impedance, mainly depending on
the operational amplifier used, resistive electrodes are subject to constant
change in impedance. Figure 4.4 shows the decrease of contact impedance
over time. The impedance appears to decrease exponentially to a compara-
tive level for all tested dry electrodes. This effect is explained by perspiration
that reduces the impedance of the skin. Wet electrodes have a significantly
lower impedance, but for long term use, the electrolytic gel dehydrates and
contact impedance increases.

Effect of Electrical Charges

As mentioned earlier, electrically charged bodies near the electrodes have
an influence on the measurement. Capacitive sensors are expected to suffer
more from effects by electrically charged bodies than resistive sensors. Searle
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and Kirkup [55] placed a rotating metal rotor, charged with 4 kV over the
sensors mounted on the subjects arm. Interestingly, wet electrodes without
shielding suffered the most interference. Unshielded, capacitive electrodes do
slightly better, and dry resistive sensors suffer the least. When the electrodes
are shielded by a grounded, metal surrounding, the interference is reduced
by 26 dB on average.

Movement of Electrodes

Moving electrodes have a negative influence on both, resistive and capacitive
electrodes. As wet resistive electrodes often are fixed on the subject by an
adhesive and due to the electrolytic gel, ohmic contact is maintained be-
tween electrode and skin even when mild force is applied to the electrodes.
Nevertheless, pushing, pulling or stretching of the skin causes the skin po-
tential artifact, an voltage between inner and outer layers of the skin. For
capacitive electrodes, moving the electrodes corresponds to changing the
thickness of the dielectric between the plates of a capacitor. Wet electrodes
are least affected by motion effects, dry resistive electrodes suffer the most.

Conclusion and Choice of Sensor

We conclude that for our desired use case of mobile, unobtrusive, continuous
ECG recording, capacitive electrodes are an appropriate choice. While we
cannot identify any grave disadvantages of capacitive electrodes, they offer
high tolerance against electrode movement. Furthermore, capacitive elec-
trodes seem to be most usable within this comparison, as the skin doesn’t
need to be prepared by applying conductive gel or shaving for ohmic contact
and can operate through layers of clothing.

4.3 ECG Authentication
In this section, we investigate some of the available techniques for ECG
authentication, from feature selection to extraction and classification. Gen-
erally, ECG authentication techniques can be divided in two classes: algo-
rithms based on fiducial features and algorithms based on nonfiducial fea-
tures. Although the name suggests otherwise, many algorithms based on
nonfiducial features also rely on the detection and extraction of fiducial
features, but they use features other than fiducial points of the ECG for
authentication.

4.3.1 Algorithms Based on Fiducial Features

Many authentication techniques use fiducial features of the ECG to dis-
tinguish individuals. Fiducial features are based on fiducial points, such as
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Figure 4.5: Fiducial features from [29]

positive or negative peaks of ECG waves and the relation between them.
Odinaka et al. [51] divide fiducial features into five types: temporal, ampli-
tude, area, angle and dynamic (across heartbeats, such as RR interval).

As an example, we have a closer look at the work of Israel et al. [29].
After data recording and filtering, the ECG signal is subjected to fiducial de-
tection. The P, R and T peaks are easily detected, as they are local maxima
of the ECG. The onset and offset of the waves are determined by the mini-
mum radius of curvature, as this method proved more robust to noise than
using the derivative. Figure 4.5 shows the fiducial features extracted in [29].
As depicted, the authors rather use time intervals between on- and offset
and peaks of waves than amplitudes as features. They explain their choice
by the invariance of temporal features against sensor position. Unlike am-
plitude features, they are not affected by sensor placement. Unfortunately,
temporal features suffer from changes in heart rate and HRV, as discussed
in section 4.1.3. Hence, normalization of the ECG according to heart rate is
required. Due to the physiology of the heart, not all segments of the ECG
are equally affected by a change in heart rate, see section 4.1.1. Therefore,
only the segments mainly responsible for heart rate changes, namely P and
T complexes are normalized by dividing by the heart rate. The current heart
rate can be determined by the L’T’ distance. Classification is performed by
linear discriminant analysis (LDA) on the acquired features. Israel et al. [29]
claim to reach 97 − 98% classification performance upon their dataset.
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However, fiducial-based approaches rely on exact and robust detection
of fiducial points or wave segments. Even a slight error in wave detection
or alignment can lead to misclassification. Fiducial detectors usually are
built and rely on a healthy ECG without abnormal findings. It is unclear,
how fiducial detection algorithms would perform on patients with irregular
cardiac conditions, such as premature ventricular contraction or under the
influence of heavy stress, that causes superimposition of consecutive beats.

4.3.2 Algorithms Based on Nonfiducial Features

Algorithms based on nonfiducial features don’t use fiducial points for feature
vectors, but usually split the ECG sample into overlapping or nonoverlap-
ping windows and extract features from those windows. As an example, we
have a closer look on the method proposed by Agrafioti and Hatzinakos [3].

The first step is the application of a bandpass filter to remove low-
frequency noise, such as baseline wandering and high-frequency noise, such
as power line interference. Then, the filtered ECG signal is cut into nonover-
lapping windows. The only constraint during windowing regards the window
size. Each window must at least contain one full heartbeat; in [3] a window
size of 5 seconds is used.

Now, autocorrelation is applied on the windows with 𝑀 << 𝑁 , where
𝑀 is the time lag and 𝑁 is the window size. Autocorrelation provides the
main advantage of this method, as the resulting signal is already normalized
to the maximum correlation at time shift 0.

For dimensionality reduction, DCT or LDA is applied. From the result-
ing signal of length 𝑁 +𝑀 , only 𝐶 << 𝑀 non zero DCT or LDA coefficients
that contain the most significant information are selected. Validation is done
by a threshold on the euclidean distance between the sample and the pos-
itive class, therefore the class which is meant to be evaluated positively by
authentication and contains samples of the legitimate user. If the distance
exceeds a certain value, authentication is denied. The false positive rate and
false negative rate depend on and can be influenced by the threshold.

Agrafioti and Hatzinakos [3] report a classification rate of 96 − 100% on
their dataset. The simple yet robust design of the algorithm seems to match
the requirements of continuous authentication, as it doesn’t depend on fidu-
cial feature extraction. Further, the validation by euclidean distance and
threshold could be exchanged and possibly improved by machine learning
classifiers.

4.4 Evaluation of Related Work
We have discussed the properties of ECG waves (section 4.1), how they
can be captured (section 4.2) and how recognition is performed on this
data (section 4.3). In the following section, we summarize and discuss the
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different approaches, their advantages and disadvantages as well as their
discriminative power in terms of authentication.

4.4.1 Data Acquisition

If ECG data should be used for authentication, the first step is record data.
Currently, there are three types of electrodes available to capture ECG on
the skin. Medical standard Ag/AgCl electrodes require electrolytic gel to
reduce the sensor/skin impedance. The gel also acts as a mechanical buffer
against vibrations and the usually self-adhesive electrodes are comparatively
invariant against movement. Good signal quality comes at the price of in-
convenient use. Preparations include undressing of the subject, application
of conductive gel, possibly shaving the contact points on the skin and appli-
cation of the electrodes. Wet electrodes are hardly usable for authentication
means.

Dry resistive electrodes do not use conductive gel, but as they too rely on
ohmic contact to the skin, possibly require preparations such as undressing
and shaving. Usability and flexibility are greatly improved compared to wet
electrodes, as they can be implemented into wearables [65] or ECG can be
captured unobtrusively from the subjects hands [44, 57].

Capacitive or insulating electrodes don’t rely on ohmic contact, but on
capacitive coupling. This allows for ECG recording even through layers of
clothing [14, 15] and without further preparations. While signal quality and
invariance against the movement of wet electrodes is unreached, capacitive
electrodes clearly outperform resistive electrodes in terms of usability. Unob-
trusive data recording is crucial for usability and user acceptance, therefore
we consider capacitive electrodes as key technology for ECG biometrics.

4.4.2 ECG Features

Once the data is recorded, a set of features needs to be extracted, in or-
der to perform authentication. We can distinguish fiducial and nonfiducial
features. While fiducial features are derived from characteristic points in
the ECG wave, e.g. peaks or sections of waves, nonfiducial features are ex-
tracted from ECG signals after further processing such as segmentation or
cross-correlation. To extract features from fiducial points, those points need
to be detected first. This can be a challenging task, as a standardized defi-
nition of fiducial points in the ECG wave is yet to be found. Furthermore,
conditions like electrode placement have an inherent influence on the sig-
nal amplitude and therefore on amplitude features. Additionally, temporal
changes in the ECG wave, like an increased heart rate, or medical conditions
can severely influence temporal features. Nonfiducial features, e.g. derived
from autocorrelated windows are possibly less affected of temporary changes
in amplitude or time.
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4.4.3 ECG Classification

After recording the ECG signal and extracting the selected features, classi-
fication is performed. In the simplest case, a distance metric is employed to
calculate the difference or similarity between sample and reference vector.
Class membership is assigned based on whether the similarity or dissim-
ilarity is above or below a certain threshold. Other classification methods
frequently used in literature include KNN, LDA, neural networks, SVM, etc.

4.4.4 ECG Authentication in Literature

Now that we summarized the building blocks of ECG authentication sys-
tems, we discuss several approaches proposed in literature, that serve as the
foundation of our own work.

Shen, Tompkins, and Hu [56] describe a system that extracts seven fidu-
cial features from the preprocessed ECG signal. The selected features include
temporal and amplitude features from the QRS complex, as well as the QT
interval normalized with the heart rate. The features are subjected to a
two-stage authentication process. First, a template matching algorithm is
applied. For every subject, a template waveform is selected from the signal.
During testing, cross correlation is applied on the template and 20 heartbeats
of the sample. If the average of the correlation coefficients exceeds a value
of 0.85, the algorithm proceeds with stage two. Otherwise, the algorithm
concludes that the sample doesn’t match the template. A decision-based
neural network (DBNN), trained with 20 heartbeats per class is employed
to classify the sample. On their database, consisting of 20 subjects, an iden-
tification rate of 95 % for template matching and 80 % for DBNN is reported,
when applied separately. When DBNN is executed after template matching,
the authors claim 100 % authentication rate on the dataset.

Another fiducial-based approach was developed by Israel et al. [29]. Data
recording of 29 individuals was split into 12 repeat sessions with seven tasks
per session. The tasks consist of meditative and recovery tasks, reading
aloud, mathematical manipulation [sic] and driving in virtual reality and
were designed to stimulate different states of anxiety. Additionally, data was
recorded from neck and chest. After preprocessing, 15 temporal fiducial fea-
tures were extracted, but only 12 features were selected for classification,
that has been done using LDA. The results show that, because of the se-
lection of temporal features, all subjects could be identified, invariant of
the sensor location. The classification performance within anxiety state is
specified with 97 %, and 98 % between anxiety state.

A partially fiducial approach is adopted by Silva et al. [57]. For prepro-
cessingc the data is filtered by a bandpass filter to remove unwanted noise.
Then, segmentation based on R-peak detection is used for feature extraction.
Additionally, outlier removal is performed by calculating the mean cosine
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distance to the average heartbeat waveform of the sample. The database
includes ECG recordings from 63 individuals, recorded in two sessions 4
months apart. In their experiments, two different classification approaches
are tested for both, within and between session authentication. A KNN clas-
sifier for cosine and Euclidean distance metrics is employed, as well as a SVM
classifier. The ECG waveform template is acquired either by the mean or
median heartbeat waveform. Within all tested permutations, SVM classifi-
cation serves the best results. For within session authentication, an equal
error rate (EER) of 0.99 % for the first recording session, and 1.92 % for
the second recording session was achieved. Between session authentication
reached an EER of 9.1 % and 9.37 %, when one session is used for training
and the other for testing.

A similar approach was presented by Lourenço, Silva, and Fred [44]. As
usual, the signal is first filtered to remove non signal components. Detection
of QRS complex is used for segmentation. Other than the approaches pre-
sented so far, the fiducial features used for classification are the amplitudes
of the mean waveform. The direct use of the waveform makes normalization
necessary, therefore both, time and amplitude normalization are applied on
the signal. For classification, KNN with 𝐾 = 1 and Euclidean distance cri-
terion is used. Within a database of 16 subjects, 94.3 % identification rate
and for authentication, an EER of 10.1 % was achieved.

Another promising authentication technique is proposed by Fatemian
and Hatzinakos [18]. Preprocessing is performed after discrete wavelet trans-
formation and reconstruction using the quadractic spline wavelet. After an-
alyzing the wavelet, the authors concluded that most energy of the ECG
waveform is contained in the 3𝑟𝑑 scale, while removing effects of high fre-
quency noise and power line interference. QRS complex, P and T wave are
detected and resampled for heart rate, zero-mean and unit variance normal-
ization. For each class, a template is obtained by calculating the median of
the normalized heartbeats. For classification, an iterative template match-
ing algorithm is employed. The number of heartbeats used for the extraction
of an ECG template is increased every iteration, if a correlation threshold
between sample and reference ECG template cannot be met. If after 10 it-
erations the similarity threshold hasn’t been exceeded, the system fails to
recognize the subject. A high threshold corresponds to a low false positive
rate while a low threshold corresponds to a low false negative rate. Within
27 subjects, an identification performance of 99.63% was achieved.

Regarding the high effort necessary for peak detection, segmentation and
normalization, a much easier approach to the problem is presented in [3].
After filtering the data, the signal is cut into nonoverlapping windows. Seg-
mentation is performed without prior peak detection and contains at least
one heartbeat. The normalized autocorrelation of each window is calculated.
Then, DCT or LDA are applied for dimensionality reduction and template
matching is done using Euclidean distance. The experiments were performed
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Pub. n Feature Type Feat l WIR SIR EER
[56] 20 fiducial 7 20 HB - 100% -
[29] 29 fiducial 12 120 sec 63-83% 97-98% -
[57] 63 part. fiducial - 5 HB - - 0.99% - 9.37%
[44] 16 fiducial - 30 HB - 94.3% 10.1%
[18] 27 fiducial - 10 HB - 99.63% -
[3] 27 nonfiducial - 5 sec 86.3-95.9% 96.3-100% -

Table 4.1: Comparative table of ECG authentification approaches in liter-
ature. n=number of individuals in database, l=sample length, Feat=number
of features, WIR=Window Identification Rate, SIR=Subject Identification
Rate, HB=Heartbeats.

on the same dataset of 27 subjects as in [18]. For DCT, 96.3% and for LDA
100% of subjects were identified correctly.

The above mentioned algorithms show promising results on their respec-
tive datasets. Nevertheless it is hard to compare them, as ECG recording
conditions as well as database size vary. Table 4.1 shows a summary of the
main characteristics of the mentioned authentication approaches. Note that
in [57], the EER is mentioned instead of the overall identification perfor-
mance. In [3, 18, 44, 57], no explicit feature extraction is performed. The
ECG wave or derivatives or transformations of the ECG wave are used as
features or an unspecified number of features is selected. The window iden-
tification rate stated for [29] and [3] is of importance, as it represents the
identification performance under a time constraint. If sufficient data and
time is available, even a WIR of slightly over 50% could correctly classify a
sample by majority voting and therefore achieve a high SIR. For approaches
that use discrete time frames in the dimension of one or several heartbeats,
especially for continuous authentication, this real time classification prop-
erty would be of great importance and probably more important than the
overall performance.

4.5 Potential of ECG for Continuous Authentica-
tion

Summarizing, ECG depicts the sum of the electrical potential of the heart
over time, differences in individual physiology become visible in the charac-
teristic waveform measured on the skin. Features used for recognition include
fiducial points, such as on- and offset of waves, peaks or features derived from
those points, like amplitudes or intervals, as well as statistical features. Data
acquisition setups are available in a variety of configurations. While medical
ECG requires 10 wires placed on chest, arms and legs, which results in a level
of intrusiveness and usability even far worse than retina recognition, many
ECG systems use wearable or integrated acquisition systems that allow for
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unobtrusive, continuous recording. When built into a shirt, watch, bracelet,
fitness tracker, smartphone or any other mobile device, usability can even
be on par with e.g. gait recognition, as user interaction is limited to carry-
ing the sensor device. Security-wise, ECG recognition systems are reported
to provide considerable recognition rates [51], given a well suited recording
setup. Furthermore, unlike many behavioral biometrics, ECG can’t be easily
mimicked by attackers and recording requires close distance to the subject,
which makes it harder to be disclosed, compared to obvious and publicly
visible biometrics like face or iris.

Based on the findings presented in section 4.4.4, we estimate the biomet-
ric potential of ECG similar to face recognition, while potentially providing a
high level of usability and allowing for continuous authentication. ECG pro-
vides advantageous properties for authentication and together with other
biometrics, it can provide strong authentication.



Chapter 5

Continuous ECG
Authentication System
Design

In section 2, we discussed the security issues of session based authentica-
tion approaches and the inconvenience associated with continuously enter-
ing knowledge-based secrets. Continuous, biometric authentication is one
way to combine security and usability for mobile authentication. Among the
multitude of available biometrics, ECG has special properties, as stated in
chapter 4. In this chapter, we present our prototypic system to continuously
capture ECG signals and perform user authentication. As shown in figure
5.1, our approach is divided into five components. After data recording,
digital filters are applied to remove unwanted noise from the ECG signal.
During segmentation, the signal is cut into windows. Afterwards, a feature
extraction stage includes autocorrelation of the ECG windows and calcula-
tion of difference feature vectors. Finally, classification models are employed
for authentication and identification.

Identification/
AuthenticationFeature ExtractionECG Segmentation 

Data
Filtering

Data 
Recording

Figure 5.1: Main components of our continuous ECG authentication sys-
tem.
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Figure 5.2: Sketch of hardware assembly, created with Fritzing [36].

5.1 Data Recording
In order to perform biometric authentication, ECG data is captured, recorded
and transmitted to a processing unit, which performs all subsequent tasks.
Our system therefore consists of ECG sensors, which capture the electrical
signal on the skin, a microcontoller, that samples the continuous signal and
a WIFI interface, to transmit the data to a processing unit. In the following
section, our data recording system is explained in detail.

5.1.1 Hardware

Figure 5.2 shows a sketch of our hardware assembly with the sensor, filter
and amplifier and power supply regions highlighted. The according schematic
is provided in figure 5.3. The components were selected and the system was
designed to be mobile, versatile and usable. Use cases include the implemen-
tation into a smartphone case, wearable, smartwatch or fitness tracker, etc.
Figures 5.4a and 5.4b depict two possible applications of our system.

Data Capturing

Our data capturing system consists of four components. Each of those is
described in this section.

Sensor Based on the findings in section 4.2 and the desired use case of
mobile, continuous authentication, we chose to use active, capacitive sensors.
PS25201 EPIC Ultra High Impedance Electrophysiological Sensor [83] from
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Figure 5.3: Schematic of hardware assembly, created with Fritzing [36].

(a) A pair of sensors implemented in
a shirt or elastic band is placed on the
arm, as explained in [82].

(b) A pair of sensors implemented into
a smartphone case, as reported in [81].

Figure 5.4: Use cases for capacitive ECG sensors.

Plessey Semiconductors Ltd. met our requirements. It is hereinafter referred
to as the sensor. The sensors have a length and width of about 1 cm, and
a height of about 3.5 mm, which makes them conceptually capable of being
integrated into most mobile devices. They can be operated with a bipolar
power of ±2.4 V to ±5.5 V, which allows for a variety of power supplies. The
typical power consumption is 2.5 mAh per sensor, which results in a total
power consumption of 0.025 W at 5 V. This is sufficiently low to provide
convenient battery life for mobile use cases. However, the sensors offer a
voltage gain of 50. As the amplitude of ECG signals on the skin is about
1 mV, the sensors have output signal amplitudes of about 50 mV.
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Figure 5.5: The ECG signal is acquired by differential voltage between two
PS25201 sensors, adapted from [83].

Amplifier In order to reach the full scale range (FSR) of the analog-to-
digital converter (ADC) of 3 V, in the next step, the ECG signal needs
to be amplified. Note that FSR is not limited by the microcontroller, but
by firmware created with Energia framework [73], which only allows for
reference voltage of 3 V. However, is without relevance, as we are also limited
in amplification by voltage supply of ±2.5 V. As figure 5.5 shows, the ECG
signal is acquired by measuring the differential voltage between our sensors.
Therefore, we use an instrumentation amplifier INA122 [75] and set the gain
to a factor of 105 by connecting the RG pins with a 2 kΩ resistor. During
system design and testing, this was largest possible gain without suffering
from saturation and therefore information loss of the signal.

Filter The now amplified signal suffers from both high and low frequency
noise, as described in section 4.3. Therefore, a simple RC bandpass is em-
ployed to remove low frequency noise such as baseline wandering and high
frequency noise like power line interference. The lowpass filter consists of a
4 kΩ resistor and a 1 µF capacitor, resulting in a cutoff frequency of 40 Hz.
The highpass filter consists of a 20 kΩ resistor and a 10 µF capacitor, result-
ing in a cutoff frequency of 0.8 Hz. The filters have been designed in order to
remove unwanted noise, while keeping sufficient information for classification
of ECG signals.

Microcontroller

For sampling of the continuous ECG signal captured by the sensors, we use
a MSP-EXP432P401R LaunchPad [76] from Texas Instruments. It features
a 48 MHz low power CPU and 14-bit ADC, which should suffice for WIFI
data transmission at about 100 Hz. The launchpad application board allows
for quick and easy prototyping and the extension with further hardware.
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WIFI Data Transmission

To transmit the sampled ECG signal to a mobile device, we use a CC3100
wireless plug-in module [77] for the MSP-EXP432P401R LaunchPad. The
WIFI booster pack is simply attached to the Launchpad by plugging it onto
the pins.

Ground

When the output of our continuous ECG recording system is monitored with
an oscilloscope, a 50 Hz rectangular signal can be observed. We traced the
rectangular signal back to the capacitive sensors, which have a fixed volt-
age gain of 50. It is a result of capacitance coupling of circuitry and human
body with surrounding alternating current (AC) system, devices and wires,
which are present in most buildings, especially our laboratory and office
environment. The reason for the waveform to be – other than expected –
rectangular instead of sinusoidal, is saturation of the amplifier on the sen-
sors. The high amplitude of coupled noise causes the amplifier to saturate
and cut off higher amplitude signal components. As amplifier saturation
means information loss for our signal, we need to bypass this effect. One
countermeasure is to shield our system against coupling capacitance. As our
experimentation setup is built upon a breadboard and a pair of PS25101,
a shielded and wired variant of the PS25201 retails at about 1000e [72],
shielding would be a difficult and expensive task. In search of a more prac-
tical way to circumvent this effect, we added a connection between subject
and ground. Like all conductive connections, it relies on a low impedance
interface, as explained in section 4.2. For availability and cost efficiency, we
asked the participants to keep a spoon connected to ground in their mouth.
This additional wet electrode successfully eliminated the effect of coupling
capacitance from the AC system.

However, an additional ground electrode drastically reduces usability
and practicability of an continuous, mobile ECG authentication system.
Nonetheless, this doesn’t reduce the potential of continuous, mobile ECG
authentication in any way, as a system design aware of this problem could
maintain a two-electrode-setup by shielding sensors and system. By using
properly designed hardware, ECG can be unobtrusively recorded and keep
a low profile, ideally even unnoticed by the user.

5.1.2 Software

The firmware for our ECG hardware has been created using Energia [73], Re-
lease 0101E0017, an open-source platform for electronics prototyping based
on Arduino IDE [67]. Energia supports the MSP432 board as well as the
WIFI boosterpack CC3100 with pin mappings readily available. Our code
consists of a setup method, which is executed once to initialize the system,
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and a loop method, which is executed continuously.

Listing 5.1: Initialization of variables and specification of network SSID and
password, as well as host IP and port.

// Import Libraries
#include <WiFi.h>
#include <WiFiClient.h>

// variable initialization
int ecg = 0;
char ssid[] = "WIFI_SSID";
char password[] = "WIFI_PASSWORD";
IPAddress server = IPAddress(192, 168, 1, 101);
int port = 9999;
WiFiClient client;

Listing 5.2: Firmware setup method. System connects to WIFI first, then
a connection to the host is established.

void setup()
{

Serial.begin(115200);
delay(1000);
Serial.println("Connect to WiFi network...");
WiFi.begin(ssid, password);

while(WiFi.status() != WL_CONNECTED)
{

delay(100);
}

Serial.println("Connected");
Serial.println("Acquire IP address...");

while(WiFi.localIP() == INADDR_NONE)
{

delay(100);
}

Serial.println(WiFi.localIP());
Serial.println("Connect to server...");
client.connect(server, port);
Serial.println("Connected");

}

At first, variables are initialized as shown in listing 5.1. WIFI-SSID,
password, host address and port need to be specified to establish a socket
connection. After variable initialization, the setup method depicted in listing
5.2 is executed. The system tries to connect to the WIFI network and waits
until the connection is established. As soon as the DHCP sever assigned an
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Listing 5.3: Firmware loop method. The system repeatedly reads the input
voltage from our ECG sensors and transmits it to the host.

void loop()
{

delay(10);
ecg = analogRead(30);
client.println(ecg);

if(!client.connected())
{

client.stop();
client.connect(server, port);

}
}

IP address to our system, it connects to the host specified above by IP and
port. The loop function contains the duty of our system (listing 5.3). The
ADC reads the current analog voltage from the input pin connected to our
sensors and assigns the corresponding digital value to the variable ecg. In case
the connection to the host is interrupted, the system tries to reconnect. Data
acquired during connection downtime is not buffered, which causes missing
data when connection is lost. However, although a system ready for serial
production might would contain a buffer, for real time authentication it is
not necessary. When connection to the sensor is lost, authenticity of users
cannot be verified. Therefore, negative authentication attempts as result of
missing data can be considered as intended behavior. Every cycle, the loop is
delayed for 10 ms to achieve a sample rate of about 100 Hz. More preciscely,
for a desired frequency band from 1 Hz to 40 Hz, a sampling rate above 80 Hz
is required, according to the Nyquist-Shannon sampling theorem [32]. As
the number of statements within the loop is reasonably low, their execution
time can be neglected when calculating the sample rate. We measured the
sample rate by calculating the interval time between consecutive messages
from the system, resulting in an average sample rate of 95 Hz. We conclude
an execution time of 10.52 ms for one loop cycle. By selecting a delay of
9 ms, the execution time would have been 9.52 ms, leading to a sample rate
of 105 Hz. As 95 Hz is still sufficiently far above the minimal sample rate of
80 Hz, we decided to stick with a delay of 10 ms.

5.2 Preprocessing
In the next step, the samples recorded by our system and aggregated by a
desktop client are digitally filtered, cut and selected. Digital filtering and
manual selection are performed on a desktop computer. Digital filters have
been created and applied using Matlab’s filter designer [78]. For highpass
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filtering, we designed a Butterworth filter with a stopband frequency of
0.1 Hz and a passband frequency of 1 Hz, as shown in listing 5.4. For lowpass
filtering, we designed a Butterworth filter with a passband frequency of 5 Hz
and a stopband frequency of 10 Hz, as shown in listing 5.5. Although the
cutoff frequency seems to be very low, this filter effectively removes high
frequency noise while recovering a distinctive ECG waveform.

Listing 5.4: Highpass filter designed with Matlab’s filter designer [78].
Fs = 100; % Sampling Frequency

Fstop = 0.1; % Stopband Frequency
Fpass = 1; % Passband Frequency
Astop = 80; % Stopband Attenuation (dB)
Apass = 1; % Passband Ripple (dB)
match = 'passband'; % Band to match exactly

% Construct an FDESIGN object and call its BUTTER method.
h = fdesign.highpass(Fstop, Fpass, Astop, Apass, Fs);
Hd = design(h, 'butter', 'MatchExactly', match);

Listing 5.5: Lowpass filter designed with Matlab’s filter designer [78].
Fs = 100; % Sampling Frequency

Fpass = 5; % Passband Frequency
Fstop = 10; % Stopband Frequency
Apass = 1; % Passband Ripple (dB)
Astop = 80; % Stopband Attenuation (dB)
match = 'passband'; % Band to match exactly

% Construct an FDESIGN object and call its BUTTER method.
h = fdesign.lowpass(Fpass, Fstop, Apass, Astop, Fs);
Hd = design(h, 'butter', 'MatchExactly', match);

Figure 5.6 shows the acquired signal of several heartbeats as transmitted
by our system in contrast to the same sample after digital bandpass filtering.
As visible on the y-axis, filtering introduces shift and scale to the signal. The
amplitude of the filtered signal is lower than the original amplitude, and the
signal is centered around 0 V, as highpass filtering removes any constant
signal components, i.e. signal parts with 0 Hz or voltage offsets.

In the next step, signals undergo a manual selection and cutting pro-
cess. As described in chapter 6, ECG recordings were sometimes interrupted
or influenced by movement of the participants or abrupt changes in the
impedance of the interface between participant and ground. Therefore, each
recording was monitored and heavily biased sections were manually removed.
Additionally, the recordings are cut to equal length. We do this to maintain
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Figure 5.6: The left chart depicts the sampled ECG signal, as transmitted
by our system. The right chart shows the same sample after digital filtering.

class balance during evaluation. If certain classes are over- or underrepre-
sented in the database, classification results would be biased. The length of
the ECG recordings therefore is determined the shortest one. For our eval-
uation, recordings are cut to a 11000 samples, which matches a duration of
110 s at 100 Hz sample rate.

While manual selection and cutting of ECG signals are conducted for
evaluation of our system only and therefore would not be included in pro-
ductive versions, digital filtering would be performed on mobile devices.

5.3 Feature Extraction
For feature extraction, we employed a variant of the method proposed in [3]
that we discussed in detail in section 4.3.2. The featureless approach seg-
ments ECG signals into nonoverlapping windows and performs autocorrela-
tion on each of those windows. It has several advantages over other feature
extractors, as it doesn’t depend on signal alignment, temporal or amplitudi-
nal normalization. Windows can be extracted arbitrarily from a time series,
as long as they contain at least one full heartbeat. Using nonoverlapping
windows of length 𝑛 in seconds, a new window is available every 𝑛 seconds.
In case of an attack, e.g. robbery of a currently used and unlocked mobile
device, it would take on average 𝑛/2 seconds until the next authentication
and after 𝑛 seconds, the next window doesn’t contain any ECG data of the
user anymore.

For continuous ECG authentication, a sliding window can be employed,
and authentication frequency can be tuned according to the security and
real time demand of user and application. For the windows of length 𝑁 ,
autocorrelation with 𝑀 << 𝑁 timelags is conducted. As a result of auto-
correlation, the calculated samples of length 𝑀 +1 are normalized regarding
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time and amplitude. To further reduce dimensionality, we employ PCA after
autocorrelation. Furthermore, PCA provides us with uncorrelated features,
which is beneficial for classification.

5.4 Classification
For classification of the acquired features we use machine learning classi-
fiers. Classification consist of two stages, namely training and testing. During
training, a portion of data called training partition is passed to the classifier.
We fit classification models to the training data which learn the relations be-
tween features and target variable. If tuned correctly, they can predict class
membership based on yet unseen real world data. To estimate the perfor-
mance of the achieved models, we use their predictions on our test partition.
The predicted classes are compared to the observed, real classes. Based on
accordance respectively difference between predicted and observed classes,
performance measures such as accuracy or Cohen’s Kappa [25] are used.
Kappa is a more robust performance metric compared to simple accuracy,
as it incorporates correct classifications by chance. It is defined as

𝜅 = 𝑝𝑜 − 𝑝𝑒

1 − 𝑝𝑒

where 𝑝𝑜 is the accordance between prediction and observation and 𝑝𝑒 is the
probability of an accordance by chance. In contrast, accuracy is defined as

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑝𝑜

𝑛

where 𝑛 is the number of predictions and observations. As an example, we
imagine a test for a certain disease. From 100 patients, only 1 person is is
sick, while the remaining 99 patients are healthy. If the test would predict
all 100 patients to be healthy, it would be right in 99 cases. Accuracy for
this example therefore is 99 %. In contrast, Cohen’s Kappa evaluates to
0. Therefore, we always mention accuracy combined with Kappa during
performance evaluation.
Based on those metrics, we evaluate classification performance of our models.
We distinguish between classification for identification and authentication
purposes.

5.4.1 Identification

During identification, identity of subjects is predicted based on ECG sam-
ples. For each sample, the class is determined which is most likely to match.
Identification is a comparison of a sample against every known class within
a database. It can only correctly predict classes present in the training set.
This requires the training set to contain data of all subjects present in the
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test set. Test samples outside the training set would be falsely assigned to
an existing class within the training set, causing misclassifications. There-
fore, if new subjects should be identified, reenrollment of training data and
retraining of the model is required.

5.4.2 Authentication

For authentication, the process of identification is slightly altered. Authen-
tication is a comparison between new samples and reference samples. This
means that new samples can be subjected to the classifier without reenroll-
ment of training data. Only samples which belong to the enrolled class should
be positively classified. All other samples are meant to cause a negative au-
thentication result. We can achieve this by training our models to distinguish
positive from negative authentications, rather than learning ECG waveforms
for every individual. Therefore, difference vectors between feature vectors of
different samples are computed by applying a difference function on them.
Class patterns are determined by calculating the mean of all windows of the
respective class. Class patterns need to be stored to compute difference fea-
ture vectors for authentication. Then, for all available windows, difference
vectors were calculated and labeled positive, if window and pattern originate
from the same class. Otherwise, they are labeled negative. Based on those
difference vectors, model training is performed. The trained model is able
to distinguish between difference vectors that originate from patterns and
samples of the same class and such that originate from patterns and samples
from different classes. In case the positive class needs to be exchanged, only
the stored class pattern has to be updated. Retraining of the classifier is not
involved.
In the next chapter, we thoroughly evaluate the proposed system for both
identification and authentication.



Chapter 6

Evaluation

Potential and benefits of continuous ECG classification for authentication
and identification have been shown in section 4.4. To assess authentication
performance of the system we built and described in chapter 5, we conducted
thorough evaluation process. In this chapter, we present details and results
of our evaluation.

6.1 FH Hagenberg Research ECG Database
The first step in evaluating our approach is the acquisition of the FH Hagen-
berg Research ECG Database (FRED). We recorded ECG samples of five
minutes from 27 participants, each in one session. 19 participants were male
and 8 were female. As shown in figure 6.2, most of our participants were
aged from 21 to 25 and 4 participants were from 59 to 62 years old. All
participants were apparently healthy and expressed their written consent in
capturing, recording, processing and publishing ECG data. There was no
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Figure 6.2: Histogram of age of participants, with a median age of 25.

selection of individuals or groups of any kind involved, all participants vol-
untarily took part in ECG recordings and everyone at our university was
invited to participate after a publicly announced invitation.

During data acquisition, the participants were asked to steadily sit on
a chair and touch the sensor electrodes with their index fingertips, while
keeping a metallic spoon connected to ground in their mouth. Figure 6.3
illustrates our recording setup, while a participant is touching the sensors
with his fingertips and keeping a metallic spoon connected to ground in
his mouth. Moreover, the participants hands were not supposed to touch
each other or connect to the circuitry, to avoid ECG recordings to be biased
by short circuits. Movement of the participants and their limbs should be
reduced to a minimum, to eliminate interfering electrical charges caused by
muscular activity or changes in impedance of the ground electrode.

For some participants, it was difficult or stressful to remain motionless
over a period of several minutes. When the ECG recording was massively
affected by motion artifacts, biased sections were manually removed before
further processing. Figure 6.4 illustrates an ECG signal biased by motion
artifacts. Periods of information loss also occurred, when the WIFI signal
was temporarily obstructed by other networks or devices. Due to the low
transmitting power of our WIFI board, the signal was least obstructed in
environments without too many WIFI networks and devices and in close
proximity to the access point.

As indicated in figure 6.4, removal of biased sections was performed by
cutting at the highest peak of the ECG signal, i.e. R wave, removing the
biased section up to the next unbiased peak and merging preceding and
subsequent sections. This way, we acquired 24 samples with a minimum
length of two minutes. Figure 6.1 depicts the histogram of the length of the
acquired raw ECG recordings. 12 of those 24 samples contained about 200 s
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Figure 6.3: ECG recording setup. A participant is sitting on a chair and
touching the sensor electrodes, while keeping a spoon connected to ground
in his mouth.
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Figure 6.4: ECG recording affected by motion artifact. The highlighted
section was manually removed.



6. Evaluation 55

of usable data, but in order to keep class balance, sample length is limited
by the shortest sample, which has a length of about 110 s. Therefore, every
individual in our evaluation is represented by the exact same amount of
data.

FRED contains all three datasets: the first dataset contains one raw ECG
recording per participant, i.e. 27 recordings of varying length. The second
dataset contains 24 samples after digital filtering, manually removing biased
sections and cutting recordings to equal length of 110 s. This dataset was
selected for evaluation. The third dataset contains 12 samples of equal length
of 200 s, preprocessed in an analogous manner.

6.2 Data Partitioning
Our evaluation follows a training/validation/testing scheme. To avoid gallery
dependence of our classification models, we initially shuffle our data. Then, a
part of our data is separated and forms our held-back test set. This dataset
is neither used for training of classifiers, nor to tune hyperparameters for
best performance. It is only used for final performance estimation of trained
classifiers.

The training data is used for training, validation and parameter tun-
ing of our classifiers. To obtain a realistic performance estimate, we em-
ploy cross validation (CV). The caret package [79] for R includes several
resampling methods. According to Kim [35], repeated CV outperforms non-
repeated CV in obtaining stable performance estimates and therefore can be
recommended for general use. Repeated execution on different CV partitions
is computationally more expensive than single execution, but for reducing
variability of estimators it is worth being carried out [35]. Caret’s imple-
mentation of repeated CV repeatedly executes K-fold CV, as stated in [38].
Therefore, repeated CV has been used for all classifiers with five repeats and
𝐾 = 10.

6.3 Identification
For identification of participants, each of the 24 ECG recordings contained
in FRED was cut into nonoverlapping windows. On each window, autocor-
relation was performed. For window length 𝑁 = 2.5 s, each recording results
in 44 windows. 24 classes with 44 windows each form a total of 1056 windows
that were initially used for classification. 50% of our data has been used for
training, while the remaining 50% were used for testing of our classifiers.
We commenced evaluation with KNN, SVM and neural network models.
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k Accuracy Kappa Accuracy SD Kappa SD
1 0.363 0.335 0.050 0.052
3 0.378 0.350 0.058 0.060
5 0.395 0.368 0.054 0.057

10 0.402 0.376 0.061 0.063
15 0.415 0.389 0.054 0.057
20 0.395 0.368 0.055 0.058
30 0.383 0.356 0.053 0.056
50 0.361 0.333 0.048 0.050

Table 6.1: Validation parameter grid for KNN ECG subject identification
and 𝑁 = 2.5 s for 24 subjects. Best results for 𝑘 = 15.

6.3.1 k-Nearest Neighbors

To receive a first impression of separability of our 24 ECG recordings, we
start with simple nearest neighbor classification. To find the number of near-
est neighbors, which leads to best adaption of the classifier to our data, pa-
rameter grid search is conducted. As shown in table 6.1, 𝑘 = 15 provides
best results with an accuracy of 0.41 and Kappa of 0.39 within the tested
parameters. Therefore, 𝑘 = 15 is selected for evaluation against the test
partition. Figure 6.5a shows the confusion matrix for the classification re-
sults of our test partition, which corresponds to an accuracy of 0.38 and
Kappa of 0.35. The accuracy is equivalent to the window identification rate
(WIR), stated in table 4.1. Although an accuracy of 0.38 seems to be very
low, it is well above random performance of 1

24 within 24 participants. Val-
ues along the diagonal from the lower left to upper right corner represent
correct classifications, values apart the diagonal represent misclassifications.
The confusion matrix indicates a certain discriminability, but the variance
is very high. We conclude this from the seemingly random distribution of
false classifications over the confusion matrix. The results during cross val-
idation, as shown in table 6.1 are similar to the results achieved from our
test partition. We therefore conclude that KNN doesn’t suit our data very
well and other classifiers than KNN might adapt better.

Before we continue evaluating different classifiers, we try to improve
classification performance for KNN. At first we compute the total or subject
identification rate. Identification performance can be enhanced, by perform-
ing classification on multiple windows of the same subject and determine
class membership based on majority voting. Therefore all predictions, i.e.
22 predictions for 𝑁 = 2.5 s and 11 predictions for 𝑁 = 5 s per subject
are incorporated resulting in one majority vote each. Figure 6.5b shows the
confusion matrix for the same results presented in figure 6.5a, after major-
ity voting was applied. The confusion matrix corresponds to an accuracy of
0.52 and Kappa of 0.5, which is a considerable improvement compared to the
WIR of 0.38. Introducing majority voting substantially increases classifica-
tion performance, but results in longer recording time, as multiple windows
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Figure 6.5: Confusion matrix for ECG subject identification result of test
partition for KNN with 𝑘 = 15 and 𝑁 = 2.5 s.

k Accuracy Kappa Accuracy SD Kappa SD
1 0.420 0.394 0.068 0.071
3 0.457 0.433 0.086 0.090
5 0.471 0.448 0.091 0.095

10 0.469 0.445 0.084 0.088
15 0.451 0.427 0.069 0.072
20 0.427 0.402 0.070 0.073
30 0.402 0.376 0.079 0.082
50 0.341 0.313 0.077 0.080

Table 6.2: Validation parameter grid for KNN ECG subject identification
and 𝑁 = 5 s. Best results for 𝑘 = 5.

need to be recorded, before full authentication performance can be achieved.
Therefore we try to reduce variance of our windows by prolonging window
length 𝑁 . Table 6.2 shows the results for our parameter grid for 𝑁 = 5 s.
The best accuracy and Kappa values were achieved with 𝑘 = 5. On the test
partition, this classifier scores an accuracy or WIR of 0.47 and Kappa of
0.45. The corresponding confusion matrix is shown in figure 6.6a.

Figure 6.6b shows the confusion matrix for KNN classification with 𝑘 =
5 and 𝑁 = 5 s. It corresponds to an accuracy of 0.72 and Kappa 0.71.
Considering this result, we expect more satisfying results from more powerful
classifiers.
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(b) With majority voting of 11 predic-
tions.

Figure 6.6: Confusion matrix for ECG subject identification result of test
partition for KNN with 𝑘 = 5 and 𝑁 = 5 s.

C Accuracy Kappa Accuracy SD Kappa SD
0.001 0.378 0.354 0.079 0.081
0.01 0.378 0.354 0.079 0.081
0.1 0.494 0.472 0.076 0.079

1 0.490 0.467 0.079 0.081
10 0.450 0.426 0.080 0.084

100 0.448 0.424 0.086 0.089

Table 6.3: Validation parameter grid for linear SVM ECG subject identifi-
cation and 𝑁 = 5 s. Best results for 𝐶 = 0.1.

6.3.2 Support Vector Machine

Analogously to the evaluation process for KNN classification, we conducted
parameter grid search for SVMs with linear and radial basis function kernel
and for window lengths 𝑁 = 2.5 s and 𝑁 = 5 s. Tuning parameter grids
for linear and radial SVMs are shown in tables 6.3 and 6.4. As expected,
classification with 𝑁 = 5 s outperforms 𝑁 = 2.5 s classification, and majority
voting additionally increases accuracy. Confusion matrices for 𝑁 = 5 s are
shown in figures 6.7a, 6.7b, 6.8a and 6.8b. Best results were achieved with a
radial SVM with 𝐶 = 1 and 𝜎 = 0.1. This classifier achieved a WIR of 0.54
and a SIR of 0.81.
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(a) Without majority voting.
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(b) With majority voting of 11 predic-
tions.

Figure 6.7: Confusion matrix for linear SVM ECG subject identification on
test partition with 𝐶 = 0.1 and 𝑁 = 5 s.

𝜎 C Accuracy Kappa Accuracy SD Kappa SD
0.01 0.1 0.391 0.368 0.090 0.093
0.01 1.0 0.397 0.373 0.089 0.093
0.01 10.0 0.515 0.494 0.097 0.101
0.01 100.0 0.503 0.480 0.094 0.098
0.10 0.1 0.438 0.415 0.098 0.101
0.10 1.0 0.533 0.513 0.095 0.099
0.10 10.0 0.530 0.509 0.096 0.101
0.10 100.0 0.496 0.473 0.093 0.097
1.00 0.1 0.337 0.311 0.104 0.107
1.00 1.0 0.443 0.419 0.085 0.089
1.00 10.0 0.433 0.408 0.089 0.093
1.00 100.0 0.433 0.408 0.089 0.093

Table 6.4: Validation parameter grid for radial SVM ECG subject identifi-
cation and 𝑁 = 5 s. Best results for 𝐶 = 1, 𝜎 = 0.1.

6.3.3 Neural Network

Additionally, we employed neural networks for classification. Parameter grid
search resulted in a parametrization of 𝑠𝑖𝑧𝑒 = 30 and 𝑑𝑒𝑐𝑎𝑦 = 1.1, as shown
in table 6.5. Figure 6.9a shows the confusion matrix for neural network clas-
sification, figure 6.9b shows the results after majority voting. The achieved
WIR of 0.51 and SIR of 0.74 are comparable to our previous results for KNN
and SVM. Test accuracy is even slightly better than validation accuracy of
0.5. We therefore believe that the selected parameters lead to an appropriate
fit of the model.
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Size Decay Accuracy Kappa Accuracy SD Kappa SD
1 0.0001 0.085 0.049 0.039 0.039
1 0.001 0.093 0.057 0.044 0.045
1 0.01 0.111 0.076 0.048 0.050
1 0.1 0.082 0.046 0.019 0.020
1 1 0.076 0.039 0.015 0.016
2 0.0001 0.155 0.120 0.062 0.064
2 0.001 0.193 0.159 0.087 0.090
2 0.01 0.198 0.164 0.075 0.077
2 0.1 0.150 0.115 0.052 0.053
2 1 0.144 0.110 0.038 0.039
3 0.0001 0.230 0.197 0.068 0.070
3 0.001 0.234 0.201 0.076 0.079
3 0.01 0.265 0.233 0.076 0.078
3 0.1 0.254 0.222 0.061 0.063
3 1 0.229 0.197 0.060 0.062
5 0.0001 0.331 0.302 0.066 0.069
5 0.001 0.328 0.299 0.086 0.089
5 0.01 0.328 0.298 0.073 0.076
5 0.1 0.360 0.332 0.075 0.077
5 1 0.353 0.325 0.061 0.063

10 0.0001 0.338 0.309 0.085 0.089
10 0.001 0.361 0.333 0.102 0.106
10 0.01 0.373 0.345 0.064 0.067
10 0.1 0.406 0.380 0.086 0.090
10 1 0.454 0.430 0.091 0.095
15 0.0001 0.380 0.352 0.099 0.102
15 0.001 0.379 0.351 0.100 0.104
15 0.01 0.376 0.349 0.094 0.098
15 0.1 0.452 0.427 0.091 0.095
15 1 0.473 0.450 0.095 0.098
20 0.0001 0.385 0.358 0.099 0.102
20 0.001 0.413 0.387 0.105 0.109
20 0.01 0.393 0.366 0.089 0.093
20 0.1 0.440 0.415 0.092 0.096
20 1 0.477 0.453 0.092 0.095
30 0.0001 0.408 0.381 0.098 0.102
30 0.001 0.410 0.384 0.099 0.103
30 0.01 0.423 0.398 0.095 0.099
30 0.1 0.456 0.432 0.088 0.092
30 1 0.485 0.462 0.101 0.105
30 1 0.497 0.475 0.089 0.093
30 1.1 0.504 0.483 0.083 0.086
30 1.2 0.497 0.475 0.083 0.086
30 1.3 0.491 0.468 0.079 0.083
30 1.4 0.490 0.468 0.087 0.091
30 1.5 0.496 0.473 0.089 0.093
30 1.6 0.492 0.470 0.088 0.092
30 1.7 0.493 0.471 0.084 0.088
30 1.8 0.484 0.461 0.086 0.090
30 1.9 0.492 0.469 0.083 0.086
30 2 0.486 0.463 0.086 0.090

Table 6.5: Validation parameter grid for neural network ECG subject iden-
tification and 𝑁 = 5 s. Best results for 𝑑𝑒𝑐𝑎𝑦 = 1.1, 𝑠𝑖𝑧𝑒 = 30.
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(a) Without majority voting.
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(b) With majority voting of 11 predic-
tions.

Figure 6.8: Confusion matrix for radial SVM ECG subject identification on
test partition with 𝐶 = 1, 𝜎 = 0.1 and 𝑁 = 5 s.
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Figure 6.9: Confusion matrix of neural network ECG subject identification
on test partition, 𝑁 = 5 s, 𝑠𝑖𝑧𝑒 = 30 and 𝑑𝑒𝑐𝑎𝑦 = 1.1.
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Classifier WIR Kappa (WIR) SIR Kappa (SIR)
KNN (𝑘 = 5) 0.47 0.45 0.72 0.71
linear SVM (𝐶 = 0.1) 0.50 0.47 0.73 0.72
radial SVM (𝐶 = 1, 𝜎 = 0.1) 0.54 0.52 0.81 0.80
Neural Network (𝑠𝑖𝑧𝑒 = 30, 𝑑𝑒𝑐𝑎𝑦 = 1.1) 0.51 0.49 0.74 0.73

Table 6.6: Classification results for ECG subject identification on test par-
tition, 𝑁 = 5 s.

6.3.4 Results

We employed KNN, linear and radial SVMs as well as neural networks for
classification. As shown in table 6.6, we received comparable results from
different classifiers. We therefore conclude our models to be appropriate and
plausible estimations of class separation for our dataset. Best results were
achieved with radial SVM classification, 𝑁 = 5 s and majority voting.

6.3.5 Discussion

Our results indicate that ECG has a certain discriminability. Although some
classes were correctly predicted with confidence, others were repeatedly mis-
classified by different classifiers. This could be explained by Doddington’s
Zoo [31]. Our database seems to contain goats, i.e. classes with high FRR
and lambs, i.e. classes with high FAR.

We found that majority voting significantly increases classification per-
formance. Note that our implementation of majority voting is similar to an
electoral college. Class membership of all windows of the same subject is
assigned to the class with the most votes. If two or more classes have the
same amount of votes, classes are assigned in an according split. As many
windows contribute to one authentication, the samples per row add up to 1.

Another possibility of increasing classification performance is prolonging
window length. It seems to reduce variance upon same class windows, as
short term changes in ECG recordings have less impact on longer windows.
However, the maximum acceptable window length depends on the use case
and is a tradeoff between the desired identification performance and system
response time.

Prolonging of window length seems to be better suited for small accura-
cies and short response times than majority voting, as by doubling window
length from 𝑁 = 2.5 s to 𝑁 = 5 s, WIR of KNN was raised from 0.38 to
0.52. Using majority voting on two subsequent windows is almost pointless,
as the chance for both windows being correctly classified for this case is
0.14, the chance for both windows being incorrectly classified is 0.3844 and
for the remaining chance for one correct and one incorrect classification of
0.4712, majority voting could not positively influence the resulting SIR, as
this scenario results in a draw. Majority voting therefore is more suitable
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for higher classification rates and more windows being incorporated.
However, our system is able to increase performance of existing identi-

fication systems by adding confidence in identification results and possibly
reducing response time by short circuit evaluation.

6.4 Authentication
Classification for authentication follows a slightly different routine than for
identification. From our 24 classes, autocorrelation functions of 528 nonover-
lapping windows of size 𝑁 = 5 s are computed. Then, for every class, an ECG
pattern is calculated, by taking the mean over all autocorrelated windows
from the same class. Afterwards, for all windows, difference vectors between
each pattern and window are calculated and stored. Vectors that originate
from the same class as the pattern are labeled positive. Vectors derived from
classes other than the class of the pattern are labeled negative. This way,
12672 difference vectors are available for classification. For training and val-
idation, 10% of those difference vectors are fed into the classifiers, while 90%
are used for our held-back test set. Instead of learning individual ECG wave-
forms, the models should adapt to pattern-sample difference of positive and
negative authentications. In positive cases, pattern and sample are similar,
therefore the difference is small. In negative cases, pattern and sample are
dissimilar, therefore the difference between them is large.

This procedure implies that our dataset contains 23 negative samples
for every positive sample. This imbalance caused our predictors to nearly
always predict negative results, while being correct in 23 out of 24 cases. To
address this issue, we excluded portions of negative samples from training
data. Figure 6.10 depicts the distribution of predicted results for positive
and negative samples for different ratios of positive to negative samples (P/N
ratio) in the training set. Figure 6.10i shows the original distribution of 1
positive to 23 negative samples. Predicted values for positive and negative
samples are hardly seperable. Figures 6.10a to 6.10h depict distributions of
predicted results for P/N ratios from 1:1 to 1:8.

A P/N ratio of 1:1 leads to a close distribution of positive samples, as
variance within positive samples is smaller than within negative samples.
There might be negative samples in the test partition, that differ to nega-
tive samples in the training set. Therefore, the predictor adjusts better to
the positive than to the negative class. The more negative samples are added
to the training set, the more diverse the representation of the negative class
gets. Furthermore, with a higher number of negative samples within the
training set, positive samples contribute less to overall accuracy. As shown
in table 6.7, with more negative samples within the training set, accuracy
increases while Kappa decreases. This indicates underrepresentation of pos-
itive samples. Although we achieved the highest validation results for a P/N
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P/N ratio Accuracy Kappa
1:1 0.903 0.806
1:2 0.831 0.613
1:3 0.843 0.560
1:4 0.851 0.516
1:5 0.877 0.535
1:6 0.889 0.467
1:7 0.892 0.331
1:8 0.898 0.200
1:23 0.958 0.000

Table 6.7: Validation results for ECG authentication with different P/N
ratios.

k Accuracy Kappa Accuracy SD Kappa SD
1 0.892 0.490 0.045 0.194
3 0.916 0.564 0.033 0.168
5 0.909 0.522 0.040 0.201

10 0.906 0.517 0.043 0.193
100 0.889 0.000 0.009 0.000

Table 6.8: Validation parameter grid for KNN ECG authentication with
regular differences and 𝑁 = 5 s. Best results for 𝑘 = 3.

ratio of 1:1, we select 1:2 for further evaluation, as a P/N ratio of 1:1 ex-
posed a gap between validation and test performance. Based on the class
separation visible in figure 6.10, we are confident that a P/N ratio of 1:2 fits
our data sufficiently.

6.4.1 k-Nearest Neighbors

We start the evaluation process with KNN. Table 6.8 shows our parame-
ter grid for KNN classification. Because of class imbalance in training set,
accuracy and Kappa diverge, especially for 𝑘 = 100. Best Kappa and accu-
racy are achieved with 𝑘 = 3 which is therefore selected for evaluation. As
for identification, authentication results are subject to majority voting. For
authentication, all difference vectors that originate from one ECG pattern
and one class contribute to the vote. Consequently, majority voting signifi-
cantly increases authentication performance. Figures 6.11a and 6.11b show
the ROC for KNN classification prior to and after majority voting. How-
ever, to further improve classification performance, we use another difference
function. Instead of just calculating the difference, we square the resulting
difference vector. Calculating the squared difference introduces weighting, as
it emphasizes bigger differences that result from dissimilar ECG windows,
in contrast to small differences from similar ECG windows. Table 6.9 shows
the parameter grid for KNN with squared differences.
Given the simplicity of this classifier, authentication performance is surpris-
ingly high. With majority voting, ECG authentication with KNN classifi-
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(b) P/N ratio: 1 to 2.
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(c) P/N ratio: 1 to 3.
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(d) P/N ratio: 1 to 4.

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

Prediction

D
en

si
ty

Positive Observation
Negative Observation

(e) P/N ratio: 1 to 5.
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(f) P/N ratio: 1 to 6.
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(g) P/N ratio: 1 to 7.
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(h) P/N ratio: 1 to 8.
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(i) P/N ratio: 1 to 23.

Figure 6.10: Positive and negative class density over predicted value.

k Accuracy Kappa AccuracySD KappaSD
1 0.776 0.501 0.090 0.200
3 0.790 0.536 0.102 0.219
5 0.818 0.589 0.089 0.194

10 0.824 0.609 0.100 0.217
100 0.667 0.000 0.021 0.000

Table 6.9: Validation parameter grid for KNN ECG authentication with
squared differences and 𝑁 = 5 s. Best results for 𝑘 = 10.
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(a) Without majority voting, regu-
lar difference. 𝐸𝐸𝑅 = 0.276, 𝐴𝑈𝐶 =
0.7873.
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(b) With majority voting, regular dif-
ference. 𝐸𝐸𝑅 = 0.209, 𝐴𝑈𝐶 = 0.8835.
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(c) Without majority voting, squared
difference. 𝐸𝐸𝑅 = 0.205, 𝐴𝑈𝐶 =
0.8840.
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(d) With majority voting, squared dif-
ference. 𝐸𝐸𝑅 = 0.092, 𝐴𝑈𝐶 = 0.9690.

Figure 6.11: ROC for KNN ECG authentication on test partition with
𝑘 = 3 for regular difference and 𝑘 = 10 for squared difference. Line segments
are caused by small values of 𝑘.

cation achieves an EER of 0.092, with an AUC of 0.9690. Figures 6.11c
and 6.11d show the ROC for KNN classification with squared differences.
Note that line segments are caused by small values of 𝑘. For 𝑘 = 3, predicted
values lie within 𝑝𝑟𝑒𝑑 ∈ {0, 1

3 , 2
3 , 1}.



6. Evaluation 67

C Accuracy Kappa Accuracy SD Kappa SD
0.0001 0.655 0.059 0.060 0.138
0.001 0.661 0.114 0.085 0.214
0.01 0.658 0.127 0.077 0.180
0.1 0.661 0.103 0.090 0.214

1 0.644 0.050 0.091 0.205
10 0.638 0.035 0.082 0.187

100 0.643 0.044 0.083 0.184
1000 0.648 0.063 0.089 0.200

10000 0.657 0.058 0.090 0.224

Table 6.10: Validation parameter grid for linear SVM ECG authentication
with regular differences and 𝑁 = 5 s. Best results for 𝐶 = 0.01.
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Figure 6.12: ROC for linear SVM ECG authentication on test partition,
𝐶 = 0.01. Data might not be linearly separable. 𝐸𝐸𝑅 = 0.491, 𝐴𝑈𝐶 =
0.5154

6.4.2 Support Vector Machine

Afterward KNN, we trained a linear SVM with our data. Although we tested
a variety of parameters from 10−4 to 104, we were not able to find a suitable
model. As shown in table 6.10, for all tested values of 𝐶, accuracy and espe-
cially Kappa were very low. Figure 6.12 depicts the according ROC, which
represents nearly random classification. We conclude that our data might
not be linearly separable. When linear SVM classification was applied on
squared difference vectors, classes were indeed separable, as shown in table
6.11. This might be due to the fact that simple difference vectors contain
both positive and negative values. Squaring removes negative differences
and makes it easier for linear models to separate classes. Figure 6.13 de-
picts ROC for linear SVM classification on squared differences. We continue
evaluation with nonlinear classifiers. We subjected our training partition to
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C Accuracy Kappa AccuracySD KappaSD
0.0001 0.757 0.499 0.108 0.208
0.001 0.767 0.522 0.108 0.208
0.01 0.762 0.513 0.110 0.210
0.1 0.835 0.626 0.089 0.196

1 0.848 0.660 0.087 0.186
10 0.840 0.636 0.082 0.187

Table 6.11: Validation parameter grid for linear SVM ECG authentication
with squared differences and 𝑁 = 5 s. Best results for 𝐶 = 1.
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(a) Without majority voting. 𝐸𝐸𝑅 =
0.191, 𝐴𝑈𝐶 = 0.8849.
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(b) With majority voting. 𝐸𝐸𝑅 =
0.097, 𝐴𝑈𝐶 = 0.9669.

Figure 6.13: ROC for linear SVM ECG authentication on test partition,
𝐶 = 1 for squared difference.

radial SVM classification and achieved best results with 𝜎 = 0.1, 𝐶 = 10 for
regular differences and 𝜎 = 0.01, 𝐶 = 10 for squared differences. The accord-
ing parameter grid is depicted in tables 6.12 and 6.13. Classification results
for regular distance are shown in figures 6.14a and 6.14b, while squared
distance results are depicted in figures 6.14c and 6.14d. Interestingly, con-
sidering EER and AUC, results of radial SVM classification are comparable
to KNN classification results.

6.4.3 Neural Network

Furthermore, we used neural works for classification. Although the neural
network with 𝑠𝑖𝑧𝑒 = 15, 𝑑𝑒𝑐𝑎𝑦 = 0.01 during validation scored an accuracy
value of 0.94 and Kappa of 0.87 as shown in table 6.14, it didn’t maintain
performance on the test partition. EER of 0.38 and AUC of 0.67 are below
average results within our evaluation. However, when applied on squared
difference features, a neural network with 𝑠𝑖𝑧𝑒 = 1, 𝑑𝑒𝑐𝑎𝑦 = 1 achieved the
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𝜎 C Accuracy Kappa Accuracy SD Kappa SD
0.001 0.001 0.667 0.000 0.022 0.000
0.001 0.01 0.667 0.000 0.022 0.000
0.001 0.1 0.679 0.162 0.080 0.224
0.001 1 0.691 0.174 0.083 0.253
0.001 10 0.679 0.151 0.080 0.229
0.001 100 0.689 0.150 0.083 0.233
0.01 0.001 0.667 0.000 0.022 0.000
0.01 0.01 0.777 0.489 0.103 0.249
0.01 0.1 0.783 0.513 0.101 0.234
0.01 1 0.796 0.543 0.101 0.229
0.01 10 0.836 0.614 0.094 0.235
0.01 100 0.853 0.656 0.086 0.216
0.1 0.001 0.827 0.614 0.095 0.224
0.1 0.01 0.821 0.605 0.100 0.225
0.1 0.1 0.827 0.616 0.101 0.228
0.1 1 0.858 0.665 0.097 0.233
0.1 10 0.872 0.704 0.085 0.204
0.1 100 0.860 0.676 0.073 0.179

1 0.001 0.836 0.580 0.064 0.183
1 0.01 0.841 0.612 0.072 0.186
1 0.1 0.844 0.617 0.073 0.188
1 1 0.836 0.592 0.081 0.217
1 10 0.833 0.589 0.075 0.198
1 100 0.830 0.582 0.076 0.201

Table 6.12: Validation parameter grid for radial SVM ECG authentication
with regular differences and 𝑁 = 5 s. Best results for 𝜎 = 0.1, 𝐶 = 10.

𝜎 C Accuracy Kappa Accuracy SD Kappa SD
0.001 0.001 0.667 0.000 0.024 0.000
0.001 0.01 0.667 0.000 0.024 0.000
0.001 0.1 0.759 0.500 0.096 0.197
0.001 1 0.756 0.495 0.090 0.182
0.001 10 0.759 0.499 0.088 0.177
0.001 100 0.833 0.618 0.084 0.193
0.01 0.001 0.667 0.000 0.024 0.000
0.01 0.01 0.740 0.461 0.095 0.192
0.01 0.1 0.754 0.491 0.093 0.184
0.01 1 0.748 0.479 0.087 0.172
0.01 10 0.848 0.650 0.085 0.199
0.01 100 0.830 0.612 0.091 0.208
0.1 0.001 0.784 0.530 0.098 0.213
0.1 0.01 0.775 0.514 0.097 0.212
0.1 0.1 0.777 0.515 0.095 0.207
0.1 1 0.824 0.585 0.089 0.213
0.1 10 0.814 0.557 0.095 0.236
0.1 100 0.796 0.508 0.076 0.193

1 0.001 0.819 0.548 0.080 0.217
1 0.01 0.816 0.542 0.081 0.220
1 0.1 0.817 0.545 0.081 0.220
1 1 0.827 0.560 0.072 0.207
1 10 0.817 0.533 0.082 0.234
1 100 0.789 0.451 0.076 0.228

Table 6.13: Validation parameter grid for radial SVM ECG authentication
with squared differences and 𝑁 = 5 s. Best results for 𝜎 = 0.01, 𝐶 = 10.
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(a) Without majority voting, regu-
lar difference. 𝐸𝐸𝑅 = 0.286, 𝐴𝑈𝐶 =
0.7752.
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(b) With majority voting, regular dif-
ference. 𝐸𝐸𝑅 = 0.175, 𝐴𝑈𝐶 = 0.8748.
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(c) Without majority voting, squared
difference. 𝐸𝐸𝑅 = 0.191, 𝐴𝑈𝐶 =
0.8904.
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(d) With majority voting, squared dif-
ference. 𝐸𝐸𝑅 = 0.091, 𝐴𝑈𝐶 = 0.9687.

Figure 6.14: ROC for radial SVM ECG authentication on test partition,
𝜎 = 0.1 for regular difference, 𝜎 = 0.01 for squared difference, 𝐶 = 10.

highest performance during validation, as shown in table 6.15. On our test
partition, achieved an performance of 𝐸𝐸𝑅 = 0.177, 𝐴𝑈𝐶 = 0.9024 and
𝐸𝐸𝑅 = 0.072, 𝐴𝑈𝐶 = 0.9811 with majority voting. Figure 6.15 shows our
classification results.

6.4.4 Results

We started evaluation with finding a suitable ratio of negative to positive
samples inside the training set. This is important, as too many negative
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size decay Accuracy Kappa AccuracySD KappaSD
1 0.001 0.77 0.55 0.1 0.185
1 0.01 0.777 0.559 0.098 0.185
1 0.1 0.792 0.58 0.094 0.184
1 1 0.776 0.521 0.107 0.238
3 0.001 0.873 0.718 0.079 0.179
3 0.01 0.892 0.76 0.078 0.172
3 0.1 0.891 0.759 0.074 0.163
3 1 0.883 0.732 0.085 0.198
5 0.001 0.888 0.751 0.063 0.137
5 0.01 0.903 0.787 0.088 0.19
5 0.1 0.921 0.825 0.071 0.152
5 1 0.877 0.721 0.074 0.166

10 0.001 0.91 0.801 0.066 0.147
10 0.01 0.921 0.827 0.065 0.14
10 0.1 0.934 0.854 0.053 0.118
10 1 0.894 0.757 0.069 0.159
15 0.001 0.896 0.779 0.089 0.18
15 0.01 0.94 0.867 0.058 0.131
15 0.1 0.938 0.863 0.054 0.119
15 1 0.893 0.753 0.074 0.173
20 0.001 0.911 0.806 0.068 0.146
20 0.01 0.933 0.85 0.053 0.119
20 0.1 0.938 0.864 0.051 0.11
20 1 0.894 0.757 0.065 0.15

Table 6.14: Validation parameter grid for neural network ECG authenti-
cation with regular differences and 𝑁 = 5 s. Best results for 𝑠𝑖𝑧𝑒 = 15 and
𝑑𝑒𝑐𝑎𝑦 = 0.01.

samples lead classifiers to mainly adapt to negative samples, while positive
samples hardly contribute to the model (figure 6.10h). If the number of
negative samples in the training set is too low, classifiers mainly adapt to
positive samples, while negative samples are underrepresented (figure 6.10a).
Positive samples seem to be more densely populated in feature space, while
negative samples are more sparsely distributed over feature space, as they
are more heterogeneous. Loss minimization during model training therefore
leads the model to adapt to the more homogenous class. In both cases,
dominant-class predictions are tightly arranged, while nondominant-class
predictions are randomly distributed. For extreme class imbalance (figure
6.10i), predicted results for positive and negative samples are hardly sepa-
rable. We found a positive/negative sample ratio of 1:2 suitable for our data
and predictors.

We used KNN, SVM and neural networks for classification. When ap-
plying our data to a linear SVM, we figured out that our data might not
be linearly separable. KNN and radial SVM classification provided us with
comparable results. Neural network classification scored high validation re-
sults, but lowest test results in our validation. We conclude that the model
might overfitted our data.

For every classifier, we conducted majority voting. Furthermore, we tested
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size decay Accuracy Kappa AccuracySD KappaSD
1 0.0001 0.748 0.485 0.104 0.197
1 0.001 0.755 0.496 0.114 0.221
1 0.01 0.730 0.431 0.114 0.238
1 0.1 0.795 0.542 0.112 0.254
1 1 0.812 0.585 0.088 0.193
2 0.0001 0.783 0.534 0.111 0.232
2 0.001 0.771 0.505 0.102 0.220
2 0.01 0.776 0.499 0.096 0.215
2 0.1 0.789 0.527 0.103 0.236
2 1 0.799 0.561 0.090 0.191
3 0.0001 0.804 0.556 0.104 0.243
3 0.001 0.787 0.525 0.104 0.229
3 0.01 0.788 0.528 0.113 0.255
3 0.1 0.789 0.522 0.096 0.214
3 1 0.803 0.571 0.093 0.201
5 0.0001 0.790 0.528 0.093 0.215
5 0.001 0.786 0.515 0.105 0.239
5 0.01 0.799 0.541 0.094 0.232
5 0.1 0.797 0.532 0.097 0.222
5 1 0.801 0.566 0.094 0.199

10 0.0001 0.770 0.470 0.104 0.235
10 0.001 0.774 0.486 0.100 0.227
10 0.01 0.790 0.520 0.099 0.226
10 0.1 0.798 0.533 0.103 0.240
10 1 0.8 0.567 0.094 0.196
15 0.0001 0.774 0.474 0.100 0.226
15 0.001 0.769 0.466 0.096 0.221
15 0.01 0.799 0.532 0.106 0.252
15 0.1 0.797 0.532 0.096 0.217
15 1 0.803 0.571 0.094 0.199
20 0.0001 0.787 0.500 0.096 0.228
20 0.001 0.788 0.506 0.101 0.230
20 0.01 0.794 0.517 0.091 0.221
20 0.1 0.800 0.540 0.106 0.247
20 1 0.810 0.582 0.091 0.198

Table 6.15: Validation parameter grid for neural network ECG authenti-
cation with squared differences and 𝑁 = 5 s. Best results for 𝑠𝑖𝑧𝑒 = 1 and
𝑑𝑒𝑐𝑎𝑦 = 1.

classification on squared difference vectors. Squared differences emphasize
bigger differences compared to smaller ones, which leads to better separa-
tion of positive and negative class samples. Furthermore, squaring intro-
duces commutativity and enhanced separability of positive and negative
classes. All tested classifiers achieved better results for squared differences
than for regular differences. Table 6.16 shows our evaluation results. Best
results of EER=0.177 and AUC=0.9024 were achieved with neural network
classification on squared differences. Majority voting excels this result with
EER=0.072 and AUC=0.9811.
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(a) Without majority voting, regu-
lar difference. 𝐸𝐸𝑅 = 0.379, 𝐴𝑈𝐶 =
0.6717.
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(b) With majority voting, regular dif-
ference. 𝐸𝐸𝑅 = 0.328, 𝐴𝑈𝐶 = 0.7333.
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(c) Without majority voting, squared
difference. 𝐸𝐸𝑅 = 0.177, 𝐴𝑈𝐶 =
0.9024.
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(d) With majority voting, squared dif-
ference. 𝐸𝐸𝑅 = 0.072, 𝐴𝑈𝐶 = 0.9811.

Figure 6.15: ROC for neural network ECG authentication on test partition.
𝑠𝑖𝑧𝑒 = 15, 𝑑𝑒𝑐𝑎𝑦 = 0.01 for regular distance, 𝑠𝑖𝑧𝑒 = 20, 𝑑𝑒𝑐𝑎𝑦 = 1 for squared
difference.

6.4.5 Discussion

The results we achieved for ECG authentication comply with results stated
in literature [51]. With 5 s of ECG data, our system provides an EER of
0.177. When used in conjunction with continuous authentication, multiple
windows are available for authentication for any point in time after initial
authentication. When multiple, consecutive windows are used for authen-
tication based on majority voting, EER as low as 0.072 can be achieved.
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Classifier EER AUC EER (maj.V.) AUC (maj.V.)
KNN (𝑘 = 3) 0.276 0.7873 0.209 0.8835
KNN squ.diff. (𝑘 = 10) 0.205 0.8840 0.092 0.9690
linear SVM (𝐶 = 0.01) 0.491 0.5154 - -
linear SVM (𝐶 = 1) 0.191 0.8849 0.097 0.9669
radial SVM (𝜎 = 0.1, 𝐶 = 10) 0.286 0.7752 0.175 0.8748
radial SVM squ.diff. (𝜎 = 0.01, 𝐶 = 10) 0.191 0.8904 0.091 0.9687
Neural Network (𝑠𝑖𝑧𝑒 = 15, 𝑑𝑒𝑐𝑎𝑦 = 0.01) 0.379 0.6717 0.328 0.7333
Neural Network squ.diff. (𝑠𝑖𝑧𝑒 = 1, 𝑑𝑒𝑐𝑎𝑦 = 1) 0.177 0.9024 0.072 0.9811

Table 6.16: Authentication results on test partition. Best results for neural
network on squared difference vectors.

Therefore, successful authentication over several window periods provides
considerable confidence in the result. Based on our findings, we believe that
continuous ECG authentication could support increasing mobile device se-
curity. Moreover, as ECG data can be recorded unobtrusively, ECG authen-
tication can be combined arbitrarily with different biometrics and systems
without necessarily lowering usability.

Although unobtrusively, ECG cannot easily be captured from a distance.
The main part of conscious user interaction necessary for continuous ECG
authentication is when users attach the ECG recording system, e.g. put on
a wearable or smartwatch. It might be difficult and require concerted ef-
fort to capture a persons ECG without consent. Therefore, ECG signals are
harder to acquire maliciously than other biometrics, e.g. frontal face images.
We conclude that continuous ECG authentication provides high levels of
robustness against spoofing or counterfeiting attacks. Nonetheless, ECG au-
thentication is not immune to those attacks. Attack scenarios could include
data acquisition with capacitive sensors as proposed in [48], which operate
through layers of clothing, hidden in a chair-back. However, additionally ex-
ploiting ECG for authentication within a multimodal framework adds con-
siderable amounts of effort to possible attacks, without adding additional
effort to users. Therefore, ECG authentication is capable of contributing to
mobile device security in the future.



Chapter 7

Conclusion

In this thesis, we designed, built and evaluated a system for mobile, con-
tinuous ECG authentication. We did a short review on several well known
biometrics. We found that for most biometrics, security and usability seem
to be inversely correlated. Biometrics which are considered as usable are
by trend not very secure, while highly secure biometrics often are not very
usable. We believe that the amount and the perceived obtrusiveness of user
interaction related with authentication are responsible for user acceptance of
authentication systems. Usability and user acceptance are particularly im-
portant for continuous authentication systems. Security is often considered
as expense rather than as asset. If security measures such as authentica-
tion obstruct the intended use of a system, they are unlikely to achieve user
acceptance. Therefore, only such biometrics, which can be unobtrusively
recorded qualify for continuous use. Typically, behavioral biometrics such as
keystroke analysis are employed for continuous authentication, as for their
acquisition no dedicated user interaction is required.

We studied the ECG and it’s properties which, although the human
body is subject to constant change, is surprisingly stable for individuals.
After adolescence, the adult ECG waveform remains constant to a certain
extent. During the normal aging process, mainly the amplitude of ECG
waves decreases. Even the heart rate has not a big impact on the healthy
ECG waveform, as the pulse mainly affects the intervals between subsequent
heartbeats. Depending on the selected features, ECG authentication systems
can therefore be robust against changes in heart rate. However, cardiovas-
cular conditions can cause immediate, drastic and unpredictable changes to
the ECG. Such changes would require either online learning or reenrollment
of training data for ECG identification. In contrast, our authentication ap-
proach would not require retraining to adapt to a changed ECG. It would be
sufficient to exchange the ECG pattern for calculation of difference vectors.

In our system design, we discussed different ECG sensor technologies and
figured that active, capacitive electrodes are suitable for our system. We built

75



7. Conclusion 76

a prototypic system that connects to our computer via WIFI and transmits
the recorded ECG signals. We showed that ECG can be recorded from in-
dex fingertips, although we had to accept limitations in usability during data
recording. It seems to be necessary to shield sensors and system. Nonethe-
less, we are convinced about the potential for unobtrusive ECG recording
of mobile, continuous ECG authentication. We believe that ECG authenti-
cation with the right hardware can be nearly as unobtrusively recorded as
other behavioral biometrics. Furthermore, ECG authentication has a wide
range of application, as ECG sensors could be included into many mobile
devices like smartphones, wearables or cars, as well as infrastructure like
building entrances or seatbacks of office chairs. Moreover, continuous ECG
authentication systems could provide identity verification for third party
applications, devices or services. Such an authentication providing system
could be implemented in a wearable and provide authentication for systems
within the same personal or body area network.

We recorded the FH Hagenberg Research ECG Database (FRED) for
performance evaluation of our system. Several classification models were
employed for authentication and identification scenarios. While providing
high levels of usability comparable to behavioral biometrics, ECG authenti-
cation also provides a considerable degree of security. We employed different
classification models and achieved comparable results. We achieved an ac-
curacy of 0.81 and Kappa of 0.80 for identification within 24 individuals
using SVM classification. We found that a window length of 5 s is preferable
compared to 2.5 s and achieved better results if majority voting was used.
During authentication, we were able to achieve an equal error rate of 0.177
with only 5 s of ECG data. For continuous use, we achieved an EER of 0.072
when 110 s of ECG data are incorporated in majority voting.

It seems that continuous ECG authentication has beneficial properties
regarding security and usability and therefore is able to add to any system.
Using continuous authentication on unobtrusively captured data such as
ECG enables us to perform frequent user verification and therefore enhance
security, while reducing user interaction related to authentication, which
improves usability. This in turn adds to user acceptance, which is crucial to
authentication techniques.

However, users, system designers and developers need to be aware, that
biometrics in general contain sensitive, personal information. Moreover, ECG
contains medical information which in particular deserves protection. We
therefore encourage using biometric authentication techniques, but strongly
recommend to keep possession and control over biometric templates, e.g. by
employing smart cards with biometric match-on-card approaches, as pre-
sented by Findling, Hölzl, and Mayrhofer [19]. On a personal level, this can
be achieved by authentication frameworks, which process ECG data and
provide applications with authentication results, as proposed by Hintze et
al. [27]. In conjunction with other biometrics such as gait, voice, face, iris or
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fingerprint, ECG recognition is able to form distinctive feature sets, which
provide sufficient key space while maintaining usability.
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