
DAMN - a Debugging Tool for Source
Code Reverse Engineering and Dynamic
Manipulation Live on Android Devices

Gerald Schoiber

M A S T E R A R B E I T

eingereicht am
Fachhochschul-Masterstudiengang

Mobile Computing Master

in Hagenberg

im Januar 2016



© Copyright 2016 Gerald Schoiber

This work is published under the conditions of the Creative Commons
License Attribution–NonCommercial–NoDerivatives (CC BY-NC-ND)—see
http://creativecommons.org/licenses/by-nc-nd/3.0/.

ii

http://creativecommons.org/licenses/by-nc-nd/3.0/


Declaration

I hereby declare and confirm that this thesis is entirely the result of my
own original work. Where other sources of information have been used, they
have been indicated as such and properly acknowledged. I further declare
that this or similar work has not been submitted for credit elsewhere.

Hagenberg, January 11, 2016

Gerald Schoiber

iii



Contents

Declaration iii

Preface ix

Abstract x

Kurzfassung xi

1 Introduction 1

2 Related Work 3
2.1 TaintDroid . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 AppFence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 DroidScope . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.4 DroidTrace . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.5 API Monitor & Aurasium . . . . . . . . . . . . . . . . . . . . 4
2.6 Mobile-Sandbox . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.7 ANANAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.8 ANDRUBIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.9 Google Bouncer . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Android 7
3.1 Versions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3 Java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.3.1 Reflection . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3.2 JNI . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.4 Linux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.5 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.5.1 Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.5.2 Init . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.5.3 Runtime . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.5.4 System Services . . . . . . . . . . . . . . . . . . . . . . 12

iv



Contents v

3.5.5 Applications . . . . . . . . . . . . . . . . . . . . . . . 13
3.5.6 Application Permissions . . . . . . . . . . . . . . . . . 13

3.6 Access Control on Android . . . . . . . . . . . . . . . . . . . 14
3.6.1 Discretionary Access Control . . . . . . . . . . . . . . 15
3.6.2 Mandatory Access Control . . . . . . . . . . . . . . . . 15
3.6.3 SELinux . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.7 IPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.7.1 Sockets . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.7.2 Named Pipes . . . . . . . . . . . . . . . . . . . . . . . 16
3.7.3 Binder . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.8 Boot Process . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.9 Zygote . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.10 Android Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.10.1 ADB . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.10.2 NDK-Build . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Reverse Engineering 20
4.1 General Reverse Engineering Term . . . . . . . . . . . . . . . 20
4.2 Disassembler . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2.1 Baksmali . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2.2 Apktool . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.3 Decompiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.3.1 JD-Core . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3.2 JAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3.3 Android Decompiler . . . . . . . . . . . . . . . . . . . 22

4.4 Analyzing Reversed Source Code . . . . . . . . . . . . . . . . 23
4.5 Obfuscation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.5.1 How it Works . . . . . . . . . . . . . . . . . . . . . . . 26
4.5.2 Summary Obfuscation Techniques . . . . . . . . . . . 27

4.6 Obfuscation Tools . . . . . . . . . . . . . . . . . . . . . . . . 27
4.6.1 ProGuard . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.6.2 DashO . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.6.3 Decompiled Obfuscated Source Code . . . . . . . . . . 28

4.7 Used Decompiler in DAMN . . . . . . . . . . . . . . . . . . . 32
4.8 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.9 Analysis Methods . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.9.1 Static Analysis . . . . . . . . . . . . . . . . . . . . . . 32
4.9.2 Dynamic Analysis . . . . . . . . . . . . . . . . . . . . 33

5 Concept 34
5.1 State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.2 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.3 Scope of DAMN . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.4 Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35



Contents vi

5.4.1 Security Researcher . . . . . . . . . . . . . . . . . . . 36
5.4.2 Software Development Company . . . . . . . . . . . . 36
5.4.3 Malicious Attacks . . . . . . . . . . . . . . . . . . . . 36

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6 Tooling 37
6.1 SuperSU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.1.1 Installation . . . . . . . . . . . . . . . . . . . . . . . . 37
6.1.2 Installation Process in Detail . . . . . . . . . . . . . . 37
6.1.3 Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.2 Dynamic Manipulation . . . . . . . . . . . . . . . . . . . . . . 38
6.2.1 Cydia Substrate . . . . . . . . . . . . . . . . . . . . . 39
6.2.2 Xposed Framework . . . . . . . . . . . . . . . . . . . . 39

6.3 Xposed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.3.1 XC_MethodHook Class . . . . . . . . . . . . . . . . . 42

6.4 Jadx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.5 Civetweb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.5.1 WSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

7 DAMN 44
7.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
7.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

7.2.1 Application Layer . . . . . . . . . . . . . . . . . . . . 46
7.2.2 Runtime Layer . . . . . . . . . . . . . . . . . . . . . . 46
7.2.3 Native Library Layer . . . . . . . . . . . . . . . . . . . 46

7.3 Interaction Structure . . . . . . . . . . . . . . . . . . . . . . . 47
7.3.1 File . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.3.2 IPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.3.3 WSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
7.3.4 Communication Trace . . . . . . . . . . . . . . . . . . 48

7.4 DAMN User Interface . . . . . . . . . . . . . . . . . . . . . . 49
7.4.1 DAMN Application Activities . . . . . . . . . . . . . . 49
7.4.2 DAMN Browser Pages . . . . . . . . . . . . . . . . . . 50
7.4.3 Start Page . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.4.4 Tracking Page . . . . . . . . . . . . . . . . . . . . . . 53

7.5 Configuration File . . . . . . . . . . . . . . . . . . . . . . . . 54
7.6 Flow of Loading a Tracked Application . . . . . . . . . . . . . 55
7.7 DAMN Server Process . . . . . . . . . . . . . . . . . . . . . . 56

7.7.1 Communication . . . . . . . . . . . . . . . . . . . . . . 57
7.7.2 Document Directory . . . . . . . . . . . . . . . . . . . 57

7.8 DAMN Xposed Module . . . . . . . . . . . . . . . . . . . . . 57
7.8.1 Hook Process . . . . . . . . . . . . . . . . . . . . . . . 58
7.8.2 Control Flow Architecture . . . . . . . . . . . . . . . . 58

7.9 DAMN Runtime States . . . . . . . . . . . . . . . . . . . . . 58



Contents vii

7.9.1 Run . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
7.9.2 Pause . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
7.9.3 Step . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.9.4 States of Investigated Application . . . . . . . . . . . 59
7.9.5 Obfuscated Applications . . . . . . . . . . . . . . . . . 60

7.10 Manipulate the Application . . . . . . . . . . . . . . . . . . . 60
7.10.1 Manipulation of Parameters . . . . . . . . . . . . . . . 60
7.10.2 Manipulation of Return Value . . . . . . . . . . . . . . 61
7.10.3 Manipulatable Classes . . . . . . . . . . . . . . . . . . 62

7.11 Behavior Rules . . . . . . . . . . . . . . . . . . . . . . . . . . 62
7.11.1 Structure . . . . . . . . . . . . . . . . . . . . . . . . . 62
7.11.2 Triggers . . . . . . . . . . . . . . . . . . . . . . . . . . 63
7.11.3 Actions . . . . . . . . . . . . . . . . . . . . . . . . . . 63
7.11.4 Chaining Triggers or Actions . . . . . . . . . . . . . . 64
7.11.5 Current State . . . . . . . . . . . . . . . . . . . . . . . 64

7.12 Web Socket Data Exchange Protocol . . . . . . . . . . . . . . 64
7.12.1 Protocol Structure . . . . . . . . . . . . . . . . . . . . 64
7.12.2 Protocol Codes for Start Page . . . . . . . . . . . . . . 65
7.12.3 Protocol Codes for Tracking Page . . . . . . . . . . . 65

7.13 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

8 Investigating Real World Applications 67
8.1 Test Environment . . . . . . . . . . . . . . . . . . . . . . . . . 67

8.1.1 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . 67
8.1.2 Software Used on Device . . . . . . . . . . . . . . . . . 67
8.1.3 Software Used on Computer . . . . . . . . . . . . . . . 68
8.1.4 Used Tools . . . . . . . . . . . . . . . . . . . . . . . . 68

8.2 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
8.3 Simple System Application . . . . . . . . . . . . . . . . . . . 70
8.4 Third Party Applications . . . . . . . . . . . . . . . . . . . . 74

8.4.1 Quiz Application A . . . . . . . . . . . . . . . . . . . 75
8.4.2 Investigate Quiz A . . . . . . . . . . . . . . . . . . . . 76
8.4.3 Quiz Application B . . . . . . . . . . . . . . . . . . . . 80

8.5 Recap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

9 Future Work 84
9.1 Behavior Rules . . . . . . . . . . . . . . . . . . . . . . . . . . 84
9.2 USB Tethering . . . . . . . . . . . . . . . . . . . . . . . . . . 84
9.3 Multi Threading . . . . . . . . . . . . . . . . . . . . . . . . . 85
9.4 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
9.5 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

10 Conclusion 86



Contents viii

A Content of CD-ROM 87
A.1 PDF-Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
A.2 Others-Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
A.3 Image-Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
A.4 Implementation-Files . . . . . . . . . . . . . . . . . . . . . . . 88

List of terms 89

References 91
Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Online sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93



Preface

I would like to express my very great appreciation to Univ.-Prof. PD DI Dr.
René Mayrhofer for his valuable and constructive suggestions during the
development and implementation of my thesis. I would also thank the staff
of the following organizations where I worked and shared ideas from various
projects:

• University of Applied Sciences Upper Austria
• Josef Ressel Center u’smile
• Institute of Networks and Security
My grateful thanks also extends to my girlfriend Anna who was patiently

proofread this thesis and gives me motivation to proceed.

ix



Abstract

Attackers use reverse engineering techniques to gain information which can
be used to manipulate applications for their purpose. The knowledge about
the reversed information are not restricted anymore to such attackers be-
cause DAMN provides an easy to use tool for reversing Android applications.
This can be used to build applications more secure and makes it harder for
attackers to touch them.

DAMN can handle obfuscated source code as well. As it combines re-
versed source code and dynamic manipulation techniques it can provide a
new way to investigate obfuscated source manually. It is possible to hook
into a running application and stop it at any given time. Furthermore it
can manipulate values which are passed through method calls and give the
opportunity to test against various constellations.

x



Kurzfassung

Angreifer benutzen Reverse Engineering Methoden um Information aus An-
wendungen zu bekommen und sie für ihre Zwecke zu nutzen. Das Wissen
über die Informationen, die aus diesem Prozess gewonnen werden können,
sind nicht nur mehr auf Angreifer beschränkt, da DAMN ein leicht zu ver-
wendendes Werkzeug bereit stellt, Android Anwendungen zu untersuchen.
Diese Information kann benützt werden um sichere Anwendungen zu schrei-
ben, welche es für Angreifer erschwert, diese anzugreifen.

DAMN kann auch mit verschleierten Quellcode umgehen. Da es Quell-
code aus Reverse Engineering Methoden und dynamische Manipulations-
techniken verbindet, bietet es einen neuen Weg verschleierten Code manuell
zu untersuchen. Eine ausgeführte Anwendung zu unterlaufen und jederzeit
stoppen zu können bietet neue Möglichkeiten. Es sind auch Änderungen
von Parameterwerten möglich, die bei Aufrufen von Methoden übergeben
werden und somit können auch alternative Konstellationen getestet werden.

xi



Chapter 1

Introduction

The smart phone became a central object in our daily life. People uses it to
take pictures, message, post and phone with other people. The circumstance
that their device is always in range and the huge amount of private data
which is stored on it makes it to a very critical item. Security is therefore
mandatory to ensure privacy.

For this purpose, we need to have the possibility to analyze applications
which we use to get certain that they are safe. To make it possible on Android
where we do not have the source, it is common to reverse the application to
get the source code out of it. Due to the fact that Android uses Java for the
application environment, reversing such applications to get readable source
code is pretty straight forward. Especially on applications where they do
not use any obfuscation. As obfuscation only shifts the problem of reversing
by adding some more complexity to the source, it does not change anything
in conceptional security flaws. From this point of view, we need a powerful
tool which can handle obfuscated source code in a handy way.

While there are some tools out there for reversing, none of them are
conceptional handle obfuscated source code which results often in long and
very hard investigations and analysis to understand the source. This is where
DAMN comes in. It makes it possible for developers, researchers or even
advanced users to analyze applications on their own device. After installation
and configuration, the user can start any application on the device and
analyze step by step every method call from the very beginning till the
end. It makes it possible to look at the source code, as well as the passed
parameters and their values. The same applies on the return value and any
fields. Even more, it gives the possibility to change those values on runtime
to test the behavior directly.

The structure of this thesis has the intent to first inform shortly about
related work. After this we take a look into Android and some of the Linux
components which are used by DAMN. Furthermore we have a look at the re-
verse engineering process and how we can use it. Combined with an overview

1



1. Introduction 2

about tools and projects are used in DAMN we describe how our tool is work-
ing and how it can be used to investigate applications. In addition to that
we will investigate third party applications of Android and show the results.
Lastly we give an outlook of the future work and lessons we learned during
the implementation in the conclusion.

As previously mentioned, this thesis and tool were was built to make
it possible to analyze applications on Android and make security analysis
easier. The fact that this tool perform black box reversing and gives the
possibility to manipulate applications makes it also a security issue itself.
Arbitrary usage can potentially lead to more malware which make use of
such issues.

On the other hand it also provides software developers with the opportu-
nity to take a closer look into their own applications from the view point of
an attacker. Then this information can be used to secure the application and
make it more secure which brings benefits for developers as well as users.

The way this tool gets used is up to the users and can help both parties
equally. In the end it will lead to security improvements and make Android
applications less attackable as today.



Chapter 2

Related Work

Before we introduce DAMN we are looking at the related work. Since our
tool is intended to be used for application analysis we take a look which other
tools performs application analysis. Almost all analysis tools in our related
work are full or semi automated analysis tools for detecting malware. Some
of them are using emulators for dynamic analysis because they do not need
different hardware if they want to test against different Android versions.
Others have to use special kernels or have to manipulate the application on
byte code level to analyze them. Lets have a look at the different solutions
and how they are performing.

2.1 TaintDroid
Enck et al. [10] propose a system called TaintDroid who tracks the flow
of privacy sensitive data through applications in realtime. This is done by
labeling/tagging such sensitive data with a taint and track whenever an
application access it. If this happens, TaintDroid notifies the user(and also
other applications) about it. A study of them shows that about two-thirds
of 30 popular Android applications leaking user sensitive content. Unfortu-
nately it does not block such unwanted data leaks.

2.2 AppFence
A solution to protect user against such data leaks is provided by Hornyack
et al. [13] with the tool AppFence. It uses TaintDroids tainting methods for
their implementation. They implement two approaches to protect the data.
The first is shadowing sensitive data, which means that they will return
some fake data if an application requests it(e.g. location data). The second
approach is exfiltration blocking. This means, whenever AppFence detects
tainted data is written to a socket, it will drop the data and either fake a
send conformation or tell the application that the device is in airplane mode.

3



2. Related Work 4

This is a very lean way to protect user against collecting sensitive data of
them.

2.3 DroidScope
DroidScope, which was written by Yan and Yin [27] does not run on real
devices as the solutions above. Instead, it runs on the Android emulator
and gives the opportunity to analyze native code components. However,
it was built to detect malware and does not implement any manipulation
capabilities.

2.4 DroidTrace
The only solution that provides forward execution is DroidTrace developed
by Zheng et al. [28]. It is a dynamic analysis tool based on ptrace(process
trace [18]). They disassemble the application into smali code(named after
this project1), analyze it and create a function flow graph. With changes on
smali code, which then gets repacked afterwards, they are able to trigger
different dynamic loading behaviors for investigation purpose. DroidTrace is
able to find certain zero-day malware during its analysis on a larger scale.

2.5 API Monitor & Aurasium
The developers of API Monitor & Aurasium Xu et al. [26] take another ap-
proach. Since they are only repacking the application with the apktool 4.2.2
and add some additional code into the package, they do not take use of
privilege access. If a violation occurs, the user will be ask if this violation
will get accepted or deny it.

2.6 Mobile-Sandbox
Another solution is Mobile-sandbox which combines dynamic and static anal-
ysis for automatic testing. It also logs calls to native API s(Application Pro-
gramming Interface). More information about this project can be found
here [21].

2.7 ANANAS
ANANAS is an expendable automated static and dynamic malware analysis
framework for analyzing Android applications. It allows to write plugins to

1https://github.com/JesusFreke/smali



2. Related Work 5

extend the functionality and change settings. The framework raises events
where those plugins can react to them and execute additional code. Logs will
be saved into a database where filters allows efficient reports. For executing
applications, ANANAS uses the emulator which is shipped with the Android
SDK 2. To interact with the emulator, it provides a scripting language which
can simulate interaction with the application as user input, battery status
change, incoming call simulation and more [6].

2.8 ANDRUBIS
ANDRUBIS is another automated static and dynamic malware analysis
tool which run in a QEMU (a generic open source machine emulator and
virtualizer) runtime environment [25]. It analyzes the manifest file with a
static analyze method as well as the actual byte code. The dynamic analyzing
part monitors the Dalvik 3.5.3 virtual machine and also the system level.
After investigation it performs additional analysis such as network traffic.
The analysis methods including tainting sensitive data allow to trace, if
those data get touched by an application. ANDRUBIS analyzed one million
applications from the Play Store and published the results in this paper [14].

2.9 Google Bouncer
Google Bouncer is an automated dynamic analyzing tool for Android ap-
plications. It is not exactly known how it works because Google keeps it
secrete. But it seams that it uses QEMU [1] to simulate an Android device.
Jon Oberheide & Charlie Miller were trying to get some more information
published here [30]. Google implemented it as a service which analyze every
application on the Google Play Store [5]. If they detect any malicious be-
havior they will remove it from the store. Bouncer is not a perfect analysis
tool as Nichoas Percocos researches shows on Black Hat3 in 2012 [19] and it
never will because this way of analyzing is very complex.

2.10 Summary
Most of the tools we introduced are automated analyzing tools and they are
analyzing mostly both ways, static and dynamic. Static analyzing can only
hardly detect dynamic code execution and struggles with the completeness
of the decompiled source code. Dynamic analysis overcome this problem be-
cause they are not needed for that purpose. Since dynamic analysis are very
complex, automated software can hardly handle all possibilities and making

2http://developer.android.com/sdk/index.html
3https://www.blackhat.com/



2. Related Work 6

further investigations is necessary. For those manual analysis we can use var-
ious decompilers which can reverse source code. Because obfuscated source
code is hard to investigate manually, those investigations have additional
overhead.

Dynamic reversing is rarely used for manual investigations or have a high
efforts on setup before it can be used. We would not have any problems with
obfuscated code, because the program have to be still runnable regardless of
whether obfuscation is used or not. Of course, we could use a disassembler
which offers possibility to make changes on the code and reassemble it to
an application, but assembler code is harder to read than well known Java
code.

DAMN provides a solution for that problem and combines the advan-
tages of readable Java source code and dynamic debugging of applications.
As an additional feature, it also brings the possibility to manipulate the
investigated application and test the behavior on different circumstances.



Chapter 3

Android

Android is a Linux-based operating system for mobile devices. Over the
last years it becomes one of the most used mobile operating systems world-
wide [29]. We have a look at some basic concepts of Linux as base for our
investigations on Android and of course for DAMN afterwards. First we
want to get some further informations about the components and features
of a general Linux system and after that we are looking at some Android
specific features. This should represent a short introduction into Android to
get a better understanding how DAMN is interacting with the system and
is able to perform its features.

3.1 Versions
Since Android started in September 2008 with the version 1.0, it was devel-
oped fast and a new version was released every few month. In table 3.1 we
are giving an overview about all versions. On version 1.5, Android started
to name their releases names of sweets which we also put in this figure. One
special release was in June 2014. Android released the Android Wear which
gives support for wearables like smart watches.

7



3. Android 8

Version API Release Date
1.0 1 September 2008
1.1 2 February 2009
1.5 Cupcake 3 April 2009
1.6 Donut 4 September 2009
2.0 - 2.1 Eclàir 5 - 7 October 2009
2.2 - 2.2.2 Froyo 8 Mai 2010
2.3 - 2.3.7 Gingerbread 9 - 10 December 2010
3.0 - 3.2.1 Honeycomb 11 - 13 February 2011
4.0 - 4.0.4 Ice Cream Sandwich 14 - 15 October 2011
4.1 - 4.3.1 Jelly Bean 16 - 18 June 2012
4.4 - 4.4.4 KitKat 19 October 2013
4.4W 20 June 2014
5.0 - 5.1.1 Lollipop 21 - 22 November 2014
6.0 - 6.0.1 Marshmallow 23 October 2015

3.2 Distribution
Although the actual version of Android is Marshmallow, the distribution of
Android versions shows the fragmentation this operating system is facing 3.1.
KitKat and Jellybean take a big peace of the cake and a lot of versions which
are actively used have known security flaws1.

Figure 3.1: Android Distribution

1https://www.cvedetails.com/vulnerability-list/vendor_id-1224/product_id-
19997/Google-Android.html



3. Android 9

The actual list of distribution can be found on Androids developer page
which is also updated frequently2.

3.3 Java
Java is an object-orientated program language which was developed with
high portability in mind. To achieve this, Java compiles its applications into
byte code that can be interpreted by a virtual machine, the Java Virtual
Machine(Java Virtual Machine). The virtual machine on Android is the
Dalvik 3.5.3 virtual machine where the compiled application runs on. On
devices where ART is used, the applications will be additionally compiled
into device specific code before it is running on the ART runtime.

Nowadays Java is a very common used program language which is a
good base to get a lot of developers to write applications for the Android
operating system3. The fact that it is object-orientated makes it easier to
structure an application and also reuse code parts [22]. Another interesting
feature is Reflection which will be describe in the next section.

3.3.1 Reflection

The feature which makes it possible to inspect classes and objects on runtime
is called Reflection. It also allows to manipulate those objects. It provides
methods where we can investigate how a class is structured and get fields
and methods of it. Furthermore it is also possible to dynamically create
instances of classes and call methods of it [22].

3.3.2 JNI

Java provides also a feature to interact with native code that is called
JNI (Java Native Interface). It can load shared libraries which can be used
over this special interface. In some cases it might be useful to write specific
code parts in native code(e.g. C or C++) as it can bring performance ben-
efits. As native code do have other types of variables as Java, JNI provides
also a way to convert this types [22]. On Android provides also additional
information in the developer page4.

3.4 Linux
Before Linux there was Unix. It was created by Dennis Ritchie and Ken
Thompson in 1969. The simplicity of its design and the available source code

2http://developer.android.com/about/dashboards/index.html
3http://spectrum.ieee.org/computing/software/the-2015-top-ten-programming-

languages
4http://developer.android.com/training/articles/perf-jni.html



3. Android 10

lay the foundation to develop multiple Unix systems which benefits from
each other. Thus made the operating system powerful, robust and stable.
As time passed by, some companies made their own commercial product that
leads to license changes. So customers where not allowed to make changes
on the source code anymore.

This is were Linux comes into play. Linux wanted a free and open op-
erating system where it is possible to everybody to make changes to the
source. The first release was in the late 1991. Since then a huge community
of developers arose and Linux became a very important operating system
which is based on the Unix design [15].

3.5 Architecture
After this short excursion into Linux history we will look closer into the
Android system and its Linux related features. Android has made a some
changes into the kernel itself, so it is not a pure Linux kernel anymore. In this
section we shortly look into the Android environment and how the system is
organized. This is important to understand how our tool is implemented and
communicates in the system. The figure 3.2 shows the general architecture
of Android.

We shortly describe the different parts in this figure at the next few
sections.

3.5.1 Kernel

The kernel is the base of every Linux operating system. The same applies
to Android. Android made some changes to the kernel therefore it is not
possible to use a basic Linux kernel. There are attempts to run a vanilla
kernel on Android but this is not the usual base of an Android operating
system. A vanilla kernel is a standard Linux kernel which does not have any
additional functionalities as kernels which are provided by distributions.
However, the kernel provides different mechanisms for integrity of processes
as well as hardware support. Here are some of the additional features of the
Android kernel:

• Binder
• Ashmem
• Logger
• Wakelook
• Alarm Timers
• Paranoid Network Security
• Timed Output & Timed GPIO



3. Android 11

Figure 3.2: Android Architecture

There are more features which are listed here5.

3.5.2 Init

The init process is the first that gets started in the user space. User space is
the term which is used when processes to not run in the kernel. This happens
directly after the boot process 3.8. In differ to the Linux init process, the
Android init was built from scratch as well as the init scripts. The init
process starts all other userspace programms, regardless of whether it is a
system process like adbd 3.10.1 or the Zygote 3.9. Later we will take a deeper
look into this daemon because our tool needs to get started from this point.

3.5.3 Runtime

Android applications are basically written in Java, but they could also use
parts in native code such as C and C++. In differ to normal Java applica-
tions which run on JVM, Android runs them in an own runtime environment

5http://elinux.org/Android_Kernel_Features



3. Android 12

called either Dalvik or ART. Both are acting as a sandbox which protects
applications to interfering each other on the system.

Dalvik

Dalvik was the first runtime on Android. It was designed with mobile devices
in mind to use as less resources as possible. One of the biggest differences
between Java and Dalvik virtual machine is that the JVM is stack-based
while Dalvik has a register-based architecture. This also leads to different
instruction sets which can be used. In general, register-based machines use
fewer instruction to achieve the same as stack-based machines which makes
it ideal for mobile usages [20].

Dalvik cannot execute the Java class files directly, instead it uses dex files.
There is also another format which can be executed called dex file. Odex
stands for Optimized Dalvik Executable which is, as the name suggests, an
optimized Dalvik executable file. This special format splits some parts of an
application into such a odexed file which can be directly loaded and do not
have to be extracted from the apk file6.

ART

With the Android L (Lolipop), Android got a new runtime called ART . On
Android L it was still possible to switch back to Dalvik but it is standard on
Android M alias Marshmallow. As M was still under development during
the creation of DAMN we did not care about it. Fortunately DAMN is
compatible with it as we tested it on a Nexus 6 with M on it. Because
DAMN relies on Xposed, and this tool has already adopt changes to make
it work on that new runtime.

A big difference to Dalvik is that ART is implemented as AOT (ahead-
of-time) runtime. This means that ART compiles the applications on in-
stallation into a device specific executable file which should bring execution
performance improvements. The compiled files have the oat file format which
can be directly loaded into the memory and are comparable in they func-
tionality with odexed files7.

3.5.4 System Services

System services are executed on top of the runtime and provide Android
features to other applications. We can get a list of all available services on
a device with the command adb shell service list. Depending on the version
your device is running it will print a list about one hundred services. Here
are some of them listed:

6https://www.androidpit.de/root-custom-rom-unterschied-odexed-und-deodexed
7https://source.android.com/devices/tech/dalvik/



3. Android 13

• sip
• phone
• nfc
• simphonebook
• telecom
• fingerprint
• backup
• usb
• audio
• wallpaper
• search
• country_detector
• location
• notification
• alarm
• activity
• user
As we can see the services have a broad range of functionalities they

provide. Almost every of this services can be used by an application or
service over a defined remote interface if they have the right permission to
do so [8].

3.5.5 Applications

While Linux is building the base for Android, applications give the possi-
bility to extend functionality to the device to the user. Android is shipped
with some pre-installed applications which providing some basic functional-
ities like the dialer or the camera application. Every application is running
in its own installation environment and has its own permissions to interact
with other applications or features of Android. The installation directory
differs and can be programmatically experienced like this:

Listing 3.1: Get Installation Directory
1 getApplicationContext().getFilesDir().getAbsolutePath();

This will give us something like /data/data/<app package>/ which
DAMN needs to put some additional data there which is described in more
detail later.

3.5.6 Application Permissions

Applications need to be restricted in the way of accessing sources of the
device. E.g. we do not want a simple game to read all of our SMS messages



3. Android 14

we received. Therefore the system has to provide the possibility to restrict
such access. In Android, user can see what application needs which permis-
sions and can decide if it is plausible or not. Unfortunately the Android eco
system only provides us the opportunity to either allow all permissions an
application claims or to not to install it.

The permission model in Android relies among others on the Unix DAC 3.6.1
mechanism. If an application has the permission for using the Internet, it
will be added into the group with the gid inet. So to take a look at the
permission mappings on the device we can look into the /system/etc/per-
missions/platform.xml [3]:

Listing 3.2: Snipped of Permission File
1 <permission name="android.permission.INTERNET" >
2 <group gid="inet" />
3 </permission>
4
5 <permission name="android.permission.READ_LOGS" >
6 <group gid="log" />
7 </permission>
8
9 <permission name="android.permission.READ_EXTERNAL_STORAGE" >

10 <group gid="sdcard_r" />
11 </permission>
12
13 <permission name="android.permission.WRITE_EXTERNAL_STORAGE" >
14 <group gid="sdcard_r" />
15 <group gid="sdcard_rw" />
16 <group gid="media_rw" />
17 </permission>

We will later look deeper into the access permission model of Linux that
are partly used to implement those permissions of Android applications.

On Android M it is now possible to decline single permissions for each
application. Additional information about this can be found on the Android
developer page8.

3.6 Access Control on Android
Android uses also access control mechanisms from Linux. These are impor-
tant functionalities to ensure that every process can only access resources
where it has the permissions to it. Some of the application permissions also
relies on this access control mechanisms.

8http://developer.android.com/training/permissions/index.html



3. Android 15

3.6.1 Discretionary Access Control

A very basic access control mechanism is DAC . It is used for the Linux file
systems and handles the access control on the system. The concept can han-
dle different users as well as groups. A non privileged user can change the
permission to files which he owns and make it e.g. readable for every other
non privileged user on the system. This can be done without an administra-
tor which is handy in many cases but can lead to inconsistence.

3.6.2 Mandatory Access Control

Another access control mechanism is MAC . The very basic difference be-
tween DAC and MAC is that a system administrator must define policies
which declares which user or group has access to which system resources.
They can not changed by a non privileged user. An example of MAC is
SELinux which is described bellow.

3.6.3 SELinux

As explained above, SELinux is a mandatory access control system which
extends the standard Linux DAC mechanism. The problem with DAC mech-
anisms is that any application could access files which are public read or
writable regardless of whether it was intended or accidentally.

Android uses a modified implementation of SELinux that is implemented
since version 4.39. The purpose is to split core systems into security domains.
For every domain there are existing access policies which control the accessi-
bility between them. This policies can not be changed by a common applica-
tion and therefore are fixed. On Android version 4.4, SELinux is in enforcing
mode which applies to the core system daemons. Applications still run in
permissive mode and that is why violations of applications only produce logs
but no runtime errors [8].

3.7 IPC
In Android, the kernel takes care of each process is running in its own sep-
arated address space. Therefore a process can not simply manipulate the
memory of another process. This provides stability as well as security to
the system. But if a process wants to use a service, which actually is just
another process, we need a way to interact between the processes. For that
purpose Android and any other Linux based systems uses IPC (Inter Process
Communication). There are a lot of different opportunities to achieve such
a communication between processes like sockets, signals, pipes, semaphores

9http://seandroid.bitbucket.org/



3. Android 16

as well as the Binder 3.7.3. Let us take a brief look at some of those mech-
anisms.

3.7.1 Sockets

Sockets are a great way to interact with other processes or even other systems
over a network from an application. To create such a socket we use a system
call named socket [5]. This call need three parameters:

• Domain
• Type
• Protocol
The domain determines which protocol family is used for communication.

To get a list of possible protocols we can use the command cat /proc/net/pro-
tocols. The following list shows some domains:

• PF_UNIX
• PF_INET
• PF_NETLINK
The type indicates the communication semantics. Some defined types

are:
• SOCK_STREAM
• SOCK_DGRAM
• SOCK_RAW
Last but not least, the protocol which defines a particular protocol used

by the socket but usually only one exists for the specified domain and type10.
Some common known combinations are:

• TCP = PF_INET with SOCK_STREAM
• UDP = PF_INET with SOCK_DGRAM

3.7.2 Named Pipes

Named-pipes, also known as FIFOs, are a very basic Unix example of an
IPC mechanism. So for creating such a pipe we use the system call mkfifo
which has two parameters:

• file
• mode
While the file declares the name of the pipe, the mode sets the access

privileges of this pipe11. A process which has write access to this file can push
something onto this pipe now. Another process which has read access to the

10http://man7.org/linux/man-pages/man2/socket.2.html
11http://linux.die.net/man/3/mkfifo



3. Android 17

file can read from this pipe and get the message from the other process. A
very simple command line example show how it works 3.3.

Listing 3.3: Named Pipe Command Line Example
1 > echo hello > mypipe &
2 [1] 1669
3 > cat mypipe
4 hello
5 [1]+ Done echo hello > mypipe
6
7 ...
8
9 > cat mypipe &

10 [1] 2154
11 > echo hello > mypipe
12 hello
13 >
14 [1]+ Done cat mypipe
15 >

As the FIFO suggests, they are working with first in first out principle.
Those FIFOs are half-duplex, that means that they can only be read once
by a process. It is possible to have multiple processes which write into the
pipe but only one process will read from it at the same time. While it is
possible to have multiple processes which are reading from the same pipe,
one should know that only one of those readers gets the data. More about
pipes can be found here [2].

3.7.3 Binder

The Binder12 is a Android specific IPC mechanism. In short it provides
another possibility to let two processes communicate to each other like ac-
tivities, services and content providers. One example of it is the intent mech-
anism. Since the core part of DAMN is running at a much lower level on the
system, we can not use those IPCs.

3.8 Boot Process
Another interesting part where our tool also needs to hook into is the boot
process. If an Android device gets started it will run the bootloader at first.
Usually, the bootloader is closed source and provided by the manufacturer of
the device. It will initialize some low-level hardware which differs from device
to device and also takes care of recovery and fastboot or download mode.
After loading the initrd into the RAM it triggers the Android kernel which
itself performs additional hardware initialization and start the system. The
boot process differs in detail from Android version, manufacturer and device

12http://elinux.org/Android_Binder



3. Android 18

but should overall be quiet the same process. After mounting the root file
system, it will start the init process. As Linux user will know, this process
starts every process on a system on startup. On Android it is mostly defined
in the init.rc script which also could be exist of multiple parts. It will start
different scripts and services (eg. adbd, rild and the Zygote daemon) [12].

3.9 Zygote
To start an application, Android use the Zygote process. As described on
the boot process above, this daemon process is directly started by the init
process. Every application will be a fork of this process. This fork will have
its own address space and all needed libraries of the new application will be
loaded as well [8].

3.10 Android Tools
Android provides developers with a SDK (Software Development Kit) and
a NDK (Native Development Kit). Both come with useful tools and two of
them we want do show in detail.

3.10.1 ADB

The Android SDK provides various little tools which can be used in multiple
ways. Eclipse integrates most of them in their IDE(Integrated Development
Environment) but some of them are also useful on the shell. The most used
tool in our project is the ADB(Android Debugging Bridge). It give use the
possibility to interact with the device on the command line. Here some useful
commands:

• adb devices
• adb wait-for-device
• adb pull
• adb push
• adb shell
• adb root
• adb remount
• adb install
Let us shortly describe what this commands can be used for. The adb

devices will print a list of all connected devices to the computer. In addition
to this, the next command option wait-for-device is a nice solution to wait
for a device till its ready to receive commands over adb. This is very useful
in scripts where we have to wait until a device is ready to be used again
after a performed command which causes the device to interrupt the adb



3. Android 19

connection. Pull and push can be used to transfer files between device and
computer. It is also possible to get a remote shell with the shell command
option where we have access to the device as the shell user. On rooted
devices it is also possible to get privileged access over adb with the root
option. This will start also the remote shell with root access. Another useful
option is remount which can remount Android partitions to gain write access
to it. This is useful if we want to push data onto the /system partition as
it standardly mounted with read only access. The last command option we
want to introduce is install. With this command we are able to install an
apk file directly on the connected device.

There are other features as well that can be explored on the command
line with the help option or on the developer page13.

ADB consists of two parts. The one we described until now is the part
that is executed on the remote device, in our case the computer. The other
part has to run on the Android device as a daemon process which directly
gets started from the init process. This daemon is running with the name
adbd and starts very early in the boot process14.

3.10.2 NDK-Build

Most Android applications are written in Java but it is also possible to
implement native code like C & C++. To achieve this, we need to download
the NDK15 and setup Eclipse. As we wrote a short script that builds the
native modules of our tool and pushes it immediately onto the device as
well, we want to take a look at the ndk-build tool.

The ndk-build is a script provided by Android which is used to build na-
tive components of Android applications. To get nkd-build to work, it need
some additional informations about our modules as well as some linker infor-
mations. This informations are stored in the Android.mk file16. In addition
to this file we wrote a little shell script that build our native components
and pushes it also on the device. This script will be explained here 8.1.

13http://developer.android.com/tools/help/adb.html
14https://events.linuxfoundation.org/images/stories/pdf/lf_abs12_kobayashi.pdf
15http://developer.android.com/ndk/downloads/index.html
16http://developer.android.com/ndk/guides/android_mk.html



Chapter 4

Reverse Engineering

Reverse engineering or reversing is the process of getting readable or ma-
nipulatable source code out of an executable application without having the
source code available [3, Chapter 6]. The aim is it to get a deeper understand-
ing about the application and how it performs. To reverse an application on
Android we need the apk file. We can get this file from the device where
it is installed or directly from the Play Store with this python1 command
line script2. There are also other sources to get applications like for example
from developer or project pages themselves. Anyway, once the apk file is
available we can start reversing it with different tools.

We start to describe the reversing tools for Android applications. After
a short investigation we analyze the different outcome of some of them and
select one which we will use for DAMN. Afterwards we will take a deeper look
into obfuscation that has the aim to make the reverse engineering process
harder and the generated source code more difficult to understand. Finally
we take a look at the limitations of those reverse processes.

4.1 General Reverse Engineering Term
Before we start to take a look at the different reversing techniques, we want
to define the term of reverse engineering more detailed. Reversing and de-
compiling are often used in the same context and often understood to be
the same. But this is not the case. Reverse engineering is a general term
that describes the process of getting information about how something was
built and to rebuild or improve it. This can be a simple thing as unpacking
packages and take a look into it or, a more complex task, getting source code
with specialized tools from the application which is called decompiling.

1https://www.python.org/
2https://github.com/egirault/googleplay-api

20



4. Reverse Engineering 21

4.2 Disassembler
A disassembler does the opposite part of what an assembler does. It reverses
the executable file into assembler code. Although this code is readable, it is
pretty hard to investigate because it consists of single instructions which are
very related to the processor instruction set. On the other hand, disassembler
have a higher chance to alter code and reassemble it again to get a runnable
application again. This is much harder if we take a look at the decompiler
in the next section, because they are loosing much more information at the
reversing process.

The disassembled code on Android is called smali code. There are dif-
ferent tools which does disassembling and reassembling of executable files
which we show bellow.

4.2.1 Baksmali

One Android disassembler is called baksmali and its counter part, an assem-
bler is called smali. Those two tools also allows do disassemble and reassem-
ble dex files. It has some similarities with the Apktool and is available on
this github project3.

4.2.2 Apktool

Apktool is a tool to disassemble Android applications [11] into smali code.
The generated assembler code can be changed and repacked to a running
application. An additional feature makes it possible to debug the generated
smali code4.

4.3 Decompiler
To get Java code out of an application we have to use a decompiler. In differ
to disassembler, they are producing a higher level language which is more
easier readable. There are some Java decompiler tools freely available on the
Internet. They all reverse byte code into source code which can be reviewed
or analyzed afterwards. Advanced decompilers are also able to reconstruct
code sections which got optimized by the compiler and give it back in a well
structured and formatted source code. In addition to such Java decompiler,
there are also Android decompiler available which we list afterwards.

3https://github.com/JesusFreke/smali
4http://ibotpeaches.github.io/Apktool/



4. Reverse Engineering 22

4.3.1 JD-Core

The first decompiler is called JD-Core. This decompiler brings also a graph-
ical interface that allows to directly investigate the decompiled source code.
It also supports multiple platforms where this decompiler can run on [11].
There are a few sub projects with this decompiler includes, but not limited,
to a command line tool which can be used in scripts. Although it supports
multiple platforms they are not supporting the ARM architecture. Because
the source code is closed5 we are not able to compile it for those architecture
on our own. This limits the usage of this decompiler.

4.3.2 JAD

JAD is another Java decompiler implementation6. It also provides a com-
mand line interface that makes it handy for scripts. Unfortunately this
project is not maintained anymore and compared with JD-Core it produces
less readable source code.

4.3.3 Android Decompiler

Unlike Java, Android uses dex(dalvik executable) files instead of jar files
to run applications. The dex file contains all Java class files in a defined
structure [7]. In addition to this file, there are also other resources stored into
the apk file which containing additional information about the application
like the manifest file [11].

Those specialized Android decompilers can be seen as additional con-
verting tools. They can not reversing an application into source code but
provide us with the possibility to use standard Java decompiler afterwards
to do so. The exception proves the rule, jadx is the only Android specific
decompiler which also produces source code. Here is a list we investigated:

1. Dex2jar
2. DAD
3. JEB
4. Dare
5. Jadx

Dex2jar

Dex2jar is a decompiler project that can convert Dalvik byte code into Java
byte code. This makes it possible to use usual Java decompiler [11]. This
step is necessary because Android uses a different runtime as Java 3.5.3. It

5http://jd.benow.ca/
6http://varaneckas.com/jad/



4. Reverse Engineering 23

also supports disassembling & reassembling smali code. More information
to this project can be found on this github repository7.

DAD

The Andrugard developer team implemented the DAD(DAD is A Decom-
piler) decompiler in python which is an open source tool. It is also capable
for disassembling and reassembling of applications8.

Ded

The ded [9] project also has the aim to decompile Android applications and
generate class files out of the dex file9. This project has been replaced with
Dare that we will describe bellow.

Dare

As indicated above, Dare is the successor of ded. It is supposed to retarget
applications from the apk or dex format into class files [17]. The project is
open source and available here10.

JEB

JEB is a commercial decompiler which is available here11. As it is commercial
we did not investigated it in detail. Furthermore the source code of this
decompiler is not available.

Jadx

A more comparable Android decompiler to Java decompiler is jadx. In differ
to other Android decompiler this one produce directly source code without
using a Java decompiler. It has a graphical user interface to investigate
directly reversed code. The project can be found here12.

4.4 Analyzing Reversed Source Code
We investigated the different decompilers to make a decision based on the
reconstructed source code. We have chosen two decompilers which we will
analyze further. The first one is the Java decompiler JD-Core. To get source
code out of an apk file we have to use an additional tool to get the class

7https://github.com/pxb1988/dex2jar
8https://github.com/androguard/androguard
9http://siis.cse.psu.edu/ded/index.html#banner

10http://siis.cse.psu.edu/dare/index.html
11https://www.pnfsoftware.com/
12https://github.com/skylot/jadx



4. Reverse Engineering 24

files. This step is done with the dex2jar tool. The second decompiler is the
Android decompiler jadx. As it can directly perform reversing on a apk file
we do not need any additional tools. We use an Android application which
was obfuscated and reversing the same class with both decompilers. The
next two listing shows the output of them.

Let us start with dex2jar combined with JD-Core:

Listing 4.1: Reversed Source Code with Dex2jar and JD-Core
1 ...
2
3 private static final String ARG_GAME_ID = "ARG_GAME_ID";
4 private static final String ARG_PAUSED = "ARG_PAUSED";
5 private static final String ARG_QUESTION_INDEX = "ARG_QUESTION_INDEX";
6 private boolean mCountDownRunning = false;
7 private String mGameId;
8 private QuestionFragmentInteractionListener mListener;
9 private View.OnClickListener mOnClickListener = new View.OnClickListener

()
10 {
11 public void onClick(View paramAnonymousView)
12 {
13 long l1 = Calendar.getInstance().getTimeInMillis();
14 int k;
15 if (paramAnonymousView.getId() == QuestionFragment.this.mViews.btn0.

getId())
16 k = 0;
17 long l2;
18 while (true)
19 {
20 l2 = l1 - QuestionFragment.this.mTimeStampStart;
21 QuestionFragment.access$402(QuestionFragment.this, false);
22 Iterator localIterator = QuestionFragment.this.mViews.buttons.

iterator();
23 while (localIterator.hasNext())
24 ((AnswerButton)localIterator.next()).setOnClickListener(null);
25 if (paramAnonymousView.getId() == QuestionFragment.this.mViews.

btn1.getId())
26 {
27 k = 1;
28 }
29 else if (paramAnonymousView.getId() == QuestionFragment.this.

mViews.btn2.getId())
30 {
31 k = 2;
32 }
33 else
34 {
35 int i = paramAnonymousView.getId();
36 int j = QuestionFragment.this.mViews.btn3.getId();
37 k = 0;
38 if (i == j)
39 k = 3;



4. Reverse Engineering 25

40 }
41 }
42 QuestionFragment.this.answerQuestion(k, l2);
43 }
44 };
45
46 ...

The second snipped shows the same reversed code section with the jadx
decompiler:

Listing 4.2: Reversed Source Code with Jadx
1 ...
2
3 private static final String ARG_GAME_ID = "ARG_GAME_ID";
4 private static final String ARG_PAUSED = "ARG_PAUSED";
5 private static final String ARG_QUESTION_INDEX = "ARG_QUESTION_INDEX";
6 private boolean mCountDownRunning = false;
7 private String mGameId;
8 private QuestionFragmentInteractionListener mListener;
9 private OnClickListener mOnClickListener = new OnClickListener() {

10 public void onClick(View view) {
11 long timeStampEnd = Calendar.getInstance().getTimeInMillis();
12 int chosenAnswer = 0;
13 if (view.getId() == QuestionFragment.this.mViews.btn0.getId()) {
14 chosenAnswer = 0;
15 } else if (view.getId() == QuestionFragment.this.mViews.btn1.getId())

{
16 chosenAnswer = 1;
17 } else if (view.getId() == QuestionFragment.this.mViews.btn2.getId())

{
18 chosenAnswer = 2;
19 } else if (view.getId() == QuestionFragment.this.mViews.btn3.getId())

{
20 chosenAnswer = 3;
21 }
22 long answerTimeInMs = timeStampEnd - QuestionFragment.this.

mTimeStampStart;
23 QuestionFragment.this.mCountDownRunning = false;
24 for (AnswerButton button : QuestionFragment.this.mViews.buttons) {
25 button.setOnClickListener(null);
26 }
27 QuestionFragment.this.answerQuestion(chosenAnswer, answerTimeInMs);
28 }
29 };
30
31 ...

We can see that the first listing has problems with the naming and
the structure. Jadx reverses the source code in a much cleaner and more
readable way because it has more information available which does not get
loss during the use of dex2jar as JD-Core uses it. Because of this we are
using the Android decompiler jadx in our script which we are providing 8.5.



4. Reverse Engineering 26

But as it is one simple script it can be easily adopted if there would be even
better tools for reversing.

4.5 Obfuscation
We have described what a decompiler is and what we can do with it. The
potential to use this tools in a malicious way is manifold. For example, an
attacker could use this gathered information to find security leaks and use
those for its own purpose or use it to rebuild a clone of an application that
either use features of the origin or tries to trick users to use them to gain
information. A way to protect source code is to use obfuscation.

4.5.1 How it Works

Obfuscation is a way to rearrange the source code in a certain way that it is
still executable but very hard to read and therefore difficult to investigate.
There is also a technique to obfuscate on byte code level. If we talk about
obfuscater in this thesis, we will mean the one which alters the source code.
But there are also techniques to make it almost impossible to decompile. The
following list will show possible obfuscation techniques and explain them
afterwards:

• Layout Transformation
• Control Transformation
• Data Transformation
• Prevent Transformation

Layout Transformation

This step removes the source code formatting information that are on most
class files. This can not be recovered by a decompiler. It also renames iden-
tifiers such as classes, methods, fields and variable names and removes com-
ments in the source. But this has a rather low impact onto decompiler and
is only the first transformation technique.

Control Transformation

This transformations are using a repertoire of three basic features. The first
is aggregation which inlines methods, outline statements, clone methods and
unroll loops. Second feature is the ordering that will reorder statements,
loops and expressions. The last one is computation, it changes table inter-
pretations as well as it extends loop conditions or alters flow graphs.



4. Reverse Engineering 27

Data Transformation

This can also be split into three groups. The storage & encoding, split vari-
ables, change encodings, alter scalars into object and convert static data into
procedural data. This prevents searching for static strings like keys because
they will be produced every time they are needed. The next group of op-
erations called aggregation, they merge scalars, modify relations and split,
fold or merge arrays. The outcome of those techniques can be quite confus-
ing. The last one is called ordering which performs reordering of variables,
methods and arrays. All those operations have the purpose to make it hard
to read the source code after decompiling.

Prevent Transformation

A completely different way of obfuscation is the prevent transformation.
They do not obfuscate the code in a way that they are hard to to read for
humans but they try to prevent the decompile of the source code. This can
be achieved by adding additional information that will let the decompiler
crash but have no effect on the application itself. There are two possible
ways, either exploring weaknesses of a certain decompiler tool or knowing
problems with a general decompiling technique.

4.5.2 Summary Obfuscation Techniques

Those are the four basic obfuscation techniques which can be used by an
obfuscater [4]. Not all of those transformations will be used on all obfuscation
tools because some are more complex then others. We also want to give a
list of a couple of obfuscation tools and a short description on how they are
working in the next section.

4.6 Obfuscation Tools

4.6.1 ProGuard

Android provide an obfuscation tool named ProGuard which is included into
the SDK. It is a free tool that is pretty easy to use and can perform those
features:

• Shrink
• Optimize
• Obfuscate
• Preverify



4. Reverse Engineering 28

Shrink

At this step ProGuard will analyze the source and remove unused code
sections like dead code.

Optimize

Then it will do code optimizations which can change visibility of classes
and methods. It can also remove unused parameters or inline methods into
others which can lead to performance improvements.

Obfuscate

Next step is to rename classes, fields, methods as well as parameters.

Preverify

The last step verifies that all done changes make it impossible to break out
of the sandbox.

ProGuard uses layout obfuscation which renames the packages, classes
and variables. It also performs data obfuscation by converting static data
into procedural data. That means that it will create a method which re-
turn the origin information generated by code. This makes it hard to detect
strings with specific information as static passwords or URLs [16].

4.6.2 DashO

Another obfuscation tool is called DashO which is a commercial software
from PreEmptive. It can perform layout, data and control flow obfuscation
[16]. In the data obfuscation step, in contrast to ProGuard, it can perform
string encryption. This is an advanced possibility to make it harder gaining
information out of static data like access keys. It also tries to prevent de-
compiling to gain a higher benefit from this tool and preventing decompilers
to work proper.

4.6.3 Decompiled Obfuscated Source Code

To get a more detailed imagination about how a reversed obfuscated source
code could look like, we provide an example of a reversed application:

Listing 4.3: Reversed Obfuscated Source Code Snipped
1 package com.a.a.a;
2
3 import android.os.FileObserver;
4 import android.os.Handler;
5 import android.os.Looper;



4. Reverse Engineering 29

6 import a.a.b.m.FileInfo;
7 import a.a.d.m.FileMetaData;
8 import a.a.f.p.StorageProvider;
9 import a.a.f.p.b;

10 import java.io.File;
11
12 public class g extends FileObserver
13 {
14 private static long c = 0L;
15 private Handler a;
16 private String b;
17
18 ...
19
20 public void onEvent(int paramInt, String paramString)
21 {
22 int i = paramInt & 0xFFF;
23 switch (i)
24 {
25 default:
26 case 1024:
27 case 2048:
28 case 2:
29 case 256:
30 long l1;
31 long l2;
32 do
33 {
34 return;
35 a();
36 return;
37 l1 = System.currentTimeMillis();
38 l2 = l1 - c;
39 }
40 while ((c != 0L) && (l2 <= 500L));
41 c = l1;
42 case 4:
43 case 64:
44 case 128:
45 case 512:
46 }
47 a(paramString, i);
48 }
49
50 private static class a
51 implements Runnable
52 {
53 private String a;
54 private String b;
55 private int c;
56
57 a(String paramString1, String paramString2, int paramInt)
58 {
59 this.a = paramString1;



4. Reverse Engineering 30

60 this.b = paramString2;
61 this.c = paramInt;
62 }
63
64 public void run()
65 {
66 String str = this.a + File.separator + this.b;
67 FileInfo localFileInfo = FileInfo.getFileInfoForProvider(1, str);
68 if ((2 == this.c) || (4 == this.c))
69 {
70 File localFile = new File(str);
71 if ((localFile.exists()) && (localFileInfo != null))
72 localFileInfo.setProviderMetaData(new FileMetaData(localFile.

lastModified(), localFile.length(), "", localFileInfo.mName));
73 return;
74 }
75 StorageProvider.G().f(null);
76 }
77 }
78 }
79
80 ...

This is a moderate obfuscated class where we can see that classes, meth-
ods and variables are renamed as well as that the general structure looks
shredded. But at least it is readable source code again. There are also other
decompiled parts that can not be recovered like this:

Listing 4.4: Failed Reversed Obfuscated Source Code Snipped
1 ...
2
3 // ERROR //
4 public static void a(Context paramContext)
5 {
6 // Byte code:
7 // 0: ldc 2
8 // 2: monitorenter
9 // 3: getstatic 56 a/a/b/f:e Landroid/content/Context;

10 // 6: ifnonnull +11 -> 17
11 // 9: aload_0
12 // 10: ifnull +46 -> 56
13 // 13: aload_0
14 // 14: putstatic 56 a/a/b/f:e Landroid/content/Context;
15 // 17: getstatic 36 a/a/b/f:b Landroid/security/IKeystoreService;
16 // 20: instanceof 48
17 // 23: ifeq +33 -> 56
18 // 26: new 217 java/io/File
19 // 29: dup
20 // 30: getstatic 56 a/a/b/f:e Landroid/content/Context;
21 // 33: ldc 219
22 // 35: iconst_0
23 // 36: invokevirtual 225 android/content/Context:getDir (Ljava/

lang/String;I)Ljava/io/File;



4. Reverse Engineering 31

24 // 39: ldc 227
25 // 41: invokespecial 230 java/io/File:<init> (Ljava/io/File;Ljava

/lang/String;)V
26 // 44: astore_2
27 // 45: invokestatic 232 a/a/b/f:b ()I
28 // 48: ifne +12 -> 60
29 // 51: aload_2
30 // 52: invokevirtual 236 java/io/File:delete ()Z
31 // 55: pop
32 // 56: ldc 2
33 // 58: monitorexit
34 // 59: return
35 // 60: getstatic 38 a/a/b/f:c La/a/b/JBKey;
36 // 63: iconst_1
37 // 64: getstatic 40 a/a/b/f:d Ljavax/crypto/spec/IvParameterSpec;
38 // 67: invokevirtual 241 javax/crypto/spec/IvParameterSpec:getIV

()[B
39 // 70: invokevirtual 247 a/a/b/JBKey:initCipher (I[B)V
40 // 73: new 158 java/io/ObjectOutputStream
41 // 76: dup
42 // 77: new 249 javax/crypto/CipherOutputStream
43 // 80: dup
44 // 81: new 251 java/io/FileOutputStream
45 // 84: dup
46
47 ...
48
49 //
50 // Exception table:
51 // from to target type
52 // 73 116 119 java/lang/Exception
53 // 3 9 135 finally
54 // 13 17 135 finally
55 // 17 56 135 finally
56 // 60 73 135 finally
57 // 73 116 135 finally
58 // 121 132 135 finally
59 // 142 151 135 finally
60 // 60 73 141 a/a/b/JBException
61 }
62
63 ...
64

The decompiler was not able to decompile this method. But it shows
the instructions which can also be used to get information about what this
method is doing. However, it takes quite longer to read and understand this
instead of the higher level source code above.



4. Reverse Engineering 32

4.7 Used Decompiler in DAMN
As reading through source code gives always a benefit whether it is obfus-
cated or not, we also use a decompiler to reverse the source code out of an
application and show it in the tool. Unluckily, most of the decompilers are
closed source or using libraries which are not compiled to work on ARM ar-
chitectures. Given to the fact that most Android devices use this processor
architecture, we have to use another way of providing this functionality.

For usability reasons we decided very early that we will use a browser
interface to interact with the device. Luckily most devices like notebooks
are not using the ARM architecture and we can use a decompiler on those
machines. To make it easy to perform this manual step on the other machine,
we wrote a script which runs on Linux and reverses the source code of a
specific application and move the data in the correct directory where DAMN
can access it 8.1.

4.8 Limitations
As described above, if an obfuscation technique is used which makes it im-
possible for the decompiler to reverse the object code back into source code,
so we can not make use of it. On most applications we reversed it is only a
subset of methods where the decompiler does not work properly.

Another bigger limitation is the use of native compiled libraries that are
used by the application we want to investigate. Currently we do not provide
the possibility to decompile native libraries as well as we do not offer a way
of dynamic analyzing those files. The only way we provide to investigate
this libraries is to take a look into the interface by hooking the JNI interface
methods.

4.9 Analysis Methods
In addition to this chapter we shortly want to give another notation. As
reversing provides a way to gain the source code of any closed application,
one can use this information to get furthermore information about it. This
can be done with static analysis.

4.9.1 Static Analysis

Static analysis, also known as static code analysis, is the process of analyzing
source code of a program which is not executed. This analysis technique gives
an overview about the structure of the project and can help to determine
where from the security perspective the critical parts are. What it makes
pretty hard to analyze is obfuscated code because it adds more complexity
into it [5].



4. Reverse Engineering 33

4.9.2 Dynamic Analysis

Another technique is called dynamic analysis. As the name suggests, this
will perform its analyzing methods on a running application. In differ to
static analysis it does not have any issues with obfuscated source code since
the application has to be executable regardless whether it is obfuscated
or not. The downside is, that this analyze technique relies on the input an
application receives during the analysis. If not all possible opportunities were
executed, it will not find untouched methods and therefore can not analyze
them. Furthermore, dynamic analysis can only run on prepared environment
or application which allows it to obtain what the investigated application
does. Dynamic and static analysis are often combined to be more effective [5].



Chapter 5

Concept

5.1 State of the Art
There are two basic ways of analyzing an application. Either static or dy-
namic. While some tools combine them, they are most likely fully autom-
atized and do not a way of providing manual investigation features. Some-
times manual investigation is required to find some conceptional security
flaws that can be abused by others.

Analyzing an application only statically does have some drawbacks. One
of them is that it is hard to detect dynamic behavior of malware because
it is not executed. There is also the threat that reverse engineered source
code is potentially incomplete and can not be analyzed proper. Another
potential problem is the obfuscation of source code. It makes it hard to
perform investigations of the reversed source code for humans because it is
hard to read.

Dynamic analysis on the other hand does not struggle with obfuscation.
As the application still has to be executable, it does not have a big impact.
Another great opportunity is to test the behavior of a running application
with different parameters. This manipulations can give new ways of investi-
gating security flaws or stability problems.

5.2 Goals
The aim of DAMN is to combine those two features of analyzing applica-
tions to provide a superior solution for manual investigations. To accomplish
this, we have to overcome the biggest issue of nowadays applications from
the reverse engineering point of view, obfuscation. Because obfuscation can
perform structural changes to the source code, it is way more effort needed
to investigate the source code. Dynamic analysis can deal with this and our
tool takes use of that.

If someone wants to take a deeper look into an application, it makes sense

34



5. Concept 35

to explore the features it provides by using it. With security in mind, one can
find security concerns on potentially insecure interactions such as a login.
Although we can find it easily by navigating through the application, we do
not have any hints on the source code. Searching for strings is pointless if a
good obfuscater is used. DAMN brings those two parties together and makes
it able to find those interesting source code parts during the application is
executed. This makes it easy to find the source code which is related to an
interaction on the running application and safe time although the source
code is obfuscated.

Another benefit of combining the dynamic analysis method with the
static source code for manual investigations is the opportunity to test the
behavior of an application under changed circumstances during the execu-
tion. Instead of investigating various classes and methods which were parted
by the obfuscater, we can test the flow of an application with different pa-
rameters and how it is reacting on it. This helps to safe time because we can
directly test if the application act as it should or have a potential flaws.

5.3 Scope of DAMN
Most of the analysis tools that combine both, static and dynamic analy-
sis features, are half or full automated analyzing tools. DAMN distinguish
from this approach. Since it is sometimes needed to investigate an applica-
tion manually, we want to give support for this purpose. Especially when it
comes to obfuscated source which does not add further security to the ap-
plication but has the aim to protect the source code. Because of this manual
investigations are more complex. Although reversing is still possible with
obfuscated source it makes it pretty hard to find security flaws manually.
DAMN helps to overcome this complexity and makes obfuscation almost
neglectable for manual investigations.

Furthermore it gives the opportunity to manipulate the running appli-
cation without alter the source code. This can be used to determine the
behavior of an application with different values. It is also planned to use
behavior rules which are a way to automate some manual manipulation
operations.

However, DAMN does not provide any automated analyzing features as
it is developed to support manual investigations.

5.4 Use Cases
We will describe three use cases in which we will picture how DAMN can
be used to investigate applications.



5. Concept 36

5.4.1 Security Researcher

Our first use case is the security researcher who wants to analyze applica-
tions to find potential security flaws and report them. Although this is done
mostly with automated test suites to investigate as many applications as
possible, manual investigations can help to gain further information. DAMN
can help to reduce the time needed for those manual investigations as it is
possible to seek through the running application as usual until risky parts
have been found as for example server communications. The researcher can
pause the application at this point and move stepwise through the methods.
The dynamic part of DAMN will display which methods are used and what
parameters are passed. In addition to that it is possible to manipulate the
application to make further analysis.

Furthermore DAMN can be used on obfuscated applications to exhaust
the full potential of it and helps to shorten the investigation time on those
applications.

5.4.2 Software Development Company

Bigger software companies that do commercial software development usually
have a separate test department to ensure a high quality of their products.
Even though the company has the source code available without reversing
they perform black box reversing as well. With DAMN they have the pos-
sibility to investigate their application in a proper time and get an idea
of which information can be extracted from others. This helps to tighten
security guidelines and prevent attacks from which everyone profits.

5.4.3 Malicious Attacks

Of course we also illustrate the other side of the opportunities DAMN pro-
vides. A potential attacker can make use of DAMN to investigate third party
applications with vicious aims. Such investigations with malicious intentions
are not new. The possibility to gain information about potential targets with
reversing approaches is commonly used to find security flaws in applications
which than can be used to do harm.

5.5 Summary
The use of reverse engineering tools such as DAMN is not reserved to such
attackers anymore and can be used to get insights into the information flaws
of Android applications. This information can be used to improve security
of applications and makes it harder for attackers to attack them.



Chapter 6

Tooling

6.1 SuperSU
Android provides different security mechanism which has the purpose to
prevent abuse. On the other hand, it is also open to get extended by appli-
cations which offer new features. Some of those features need some additional
permissions that the normal API is not offering. To get those applications
still working, we can make use of the root privilege. Root give a process or a
user the possibility to do almost anything on the system. Some of the system
applications are using root to perform tasks which would not work without
this privilege like Zygote.

Typically this privilege is only accessible for system components and
can not be used by applications on Android. But there existing solutions for
that problem. One of them is called SuperSU and is provided bychainfire 1.
Because this is a basic feature DAMN needs to work proper, we will have a
deeper look into it.

6.1.1 Installation

There are multiple ways to install SuperSU onto the device. If the device
is already rooted, the simplest one is to download it from the Play Store,
install it and after a reboot everything should be done. Another solution is
to download an update zip which can be flashed by the recovery. Such a file
can be found here2.

6.1.2 Installation Process in Detail

If we take a closer look at the update zip file and open it, we can find a
few files and scripts which perform the installation in the recovery. As in
every update file, there is a update-binary and a updater-script. In this case

1https://play.google.com/store/apps/details?id=eu.chainfire.supersu
2https://download.chainfire.eu/696/SuperSU/UPDATE-SuperSU-v2.46.zip

37



6. Tooling 38

the update-binary is a shell script which performs the installation. Luckily
chainfire put also a lot of comments into this script which makes it easier
to analyze the single steps.

The interesting parts are where SuperSU copies the files which are needed
to work this mechanism and how it achieves the autostart from boot. The
parts that are installed differs from the architecture and the Android version.
Let us assume we look at a ARM device with 4.4.2 and SELinux enforced
like our test device.

Here are the files which gets installed on the file system:

File Directory
99SuperSUDaemon /system/etc/init.d/
install-recovery.sh /system/etc/
install-recovery.sh /system/bin/
su /system/xbin/su
su /system/xbin/daemonsu
su /system/bin/.ext/.su
supolicy /system/xbin/
libsupol.so /system/lib/
chattr /system/xbin/
app_process /system/bin/
Superuser.apk /system/app/

The basic SuperSU binary files are su, daemonsu and .su which are ba-
sically all the same binary file. As it starts as a daemon process, which is
required if SELinux is enforced, we have the following three options: install-
recovery, app_process or over the init process 99SuperSUDaemon. The Su-
peruser.apk will be copied as a system application. Supolicy and libsupol.so
are used to set the right policies for SELinux. The chattr3 binary is used to
remove the immutable flag from a EXT2 file.

6.1.3 Usage

If the installation was successful, every time a process is requiring root priv-
ilege the SuperSU application will be notify the user and he can choose if it
will be allowed or not. There are also settings to change this behavior and
to define rules on further access.

6.2 Dynamic Manipulation
Another big part in our tool makes use of dynamic manipulation of appli-
cations. The idea behind such a feature is to hook into specific parts of an
application and change values or the behavior of it. In general this tools

3http://linux.die.net/man/1/chattr



6. Tooling 39

are built to make changes to the system or application for either adopt new
features, alter the behavior or manipulate the look and feel. Although those
tools are not built to use it for dynamic analysis, they can be used for it.
On Android there are two tools which can be used for that. Both tools are
made individually and are not related but have much in common.

6.2.1 Cydia Substrate

was developed by saurik also known as Jay Freeman. The whole project is
closed source which makes it hard to make changes but there is a good doc-
umentation online available4. In differ to Xposed 6.3, Cydia Substrate was
developed for both, Android and iOS and has the opportunity to handle na-
tive libraries as well. This is not restricted to the native parts of applications,
it also can be used to investigate any native system part.

Unfortunately this project does not get as much attention as it should
and saurik did not released updates for Android with newer versions as 4.3.
This was the main reason why we decide to not use this framework for our
tool.

6.2.2 Xposed Framework

The second tool which allows to manipulate applications dynamically is
called the Xposed framework. It is developed by rovo89 and Tungstwenty.
In differ to Cydia, Xposed is open source and can be investigated here5. This
tool is only available on Android but is maintained actively. It now supports
the latest Android version with ART and this is also the reason why we
decided to use this framework for DAMN. A downside of the framework is,
that it cannot handle native compiled application parts. It can only hook
into the JNI interface where the native libraries gets called and change the
parameter or the returned values of it.

Installation

The Xposed running, we require a rooted device and the installation of the
Xposed Installer6. With this application it is possible to install the frame-
work onto the device and handle the modules that are installed.

How Does Xposed Work?

We described the Zygote daemon previously which start every application
with a fork of itself 3.9. Xposed will extend the libraries which gets loaded
on start with an additional one called XposedBridge.jar. Because this library

4http://www.cydiasubstrate.com/
5https://github.com/rovo89
6http://repo.xposed.info/module/de.robv.android.xposed.installer



6. Tooling 40

run in the same context as the new application, it is possible to interact with
it and hook in those methods via Reflections 3.3.1.

Modules

Modules are independent applications which have the possibility to hook
into an application and alter them. They will be shown up in the Xposed
Installer as soon as the application with the module is installed. A detailed
documentation about that can be found here7.

DAMN uses such a module that gets loaded on application start too. An
interesting fact we should have in mind is that we can use multiple modules
for the same application at the same time. This means if we want to use
DAMN we do not have to be the only module for this application. On the
other hand it may make not much sense to alter an application with another
module and investigate its behavior. Turning other modules off is therefore
the recommended way. This should be no problem because Xposed provides
a user interface where single modules can be activated or deactivated 6.1.

Figure 6.1: Xposed Module Interface

7https://github.com/rovo89/XposedBridge/wiki/Development-tutorial



6. Tooling 41

Usage

The normal usage of Xposed is to hook into applications and change their
behavior or look. This could be an emoji replacer for Whatsapp or an ex-
tended UI tweaker for AOSP(Android Open Source Project8) devices. A
list of some modules can be found here9. Further modules are available on
various sites.

Security

One short remark about security in Xposed. A module can control pretty
much everything on a single application. That it only will change the look
or add a certain feature to it does not mean that this will be the only thing
it does or will do in the future. As we can see in our module we wrote for
DAMN, we are not restricted to one application at all. Be sure to use only
modules which can be trusted in.

6.3 Xposed
The Xposed framework is an interesting open source project which can
change functionality of an Android application without changing anything
on the apk itself. Furthermore it is possible to write multiple modules which
are able to access and change the same application simultaneously. If we
would change the source code we would not be able to combine different im-
plementations without reediting it. A module can be easily switched on/off
followed by a reboot. All changes which are done to the application happen
on memory level. The framework basically loads an additional library when
the Zygote 3.9 process gets started. This process starts every application
with a fork and because the library is now on the class path of this pro-
cess, we are able to interact in its context. They also provide a few useful
functions for searching methods in classes. Xposed hooks them and makes it
possible to read and manipulate parameters or return values. The framework
dos not provide the possibility to single step each line because it does not
use any debugging symbols (which are located in the symbol table) which
would be needed for this. The capability to go through the source line by
line is impossible, but method wise is feasible.

Usually Xposed will be used to change some parts in an application to
change its behavior. To make this possible, we have to hook into a method.
This is typically done by looking into the reversed source code, selecting a
method in which we are interested into and hook it with a module. The
framework provides some helper functions to achieve this but behind those

8https://source.android.com/
9http://repo.xposed.info/module-overview



6. Tooling 42

helper functions it uses Java reflections 3.3.1. We could also use reflections
to find methods directly.

6.3.1 XC_MethodHook Class

If we have hooked a method, we will have two possibilities to interact with
it:

• Hooking on Call
• Hooking on Return

Hooking on Call

The beforeHookedMethod gives us the opportunity to modify static fields or
parameters that are passed before the method can handle them. This is the
first entry point where Xposed can manipulate values. If the called method
is returning, the second Xposed method will be called explained below.

Hooking on Return

The second entry point is the afterHookedMethod method. If a hooked
method is returning, this method gets called. We have again the opportunity
to change the values of fields or the return value at this point.

6.4 Jadx
Since our tool consists of both, a static and a dynamic analyzing part, we
use jadx for our static part. It is a tool for decompiling Android apk files into
source code. The functionality of jadx makes it possible to list all methods of
the classes and get the source code out of them. We can freely search across
this extracted source like we could do as a developer. The reversed source
code is very readable compared with Java decompiler which we already
investigated here 4.4.

This component run as a simple BASH script 8.5 on Linux-based shells.
This is the only component in this project that do not run on the de-
vice(beside the JavaScript parts on the browser pages).

6.5 Civetweb
As we are using a second screen for investigating applications, we need a way
of display those additional content. Because it should be highly available on
nearly every device, we were looking for a browser page that fits for this pur-
pose. To supply this, we are using Civetweb10, a lightweight C/C++ based

10https://github.com/civetweb/civetweb



6. Tooling 43

web server that can be compiled for Android. It also supports SSL/TSL
connections which are useful to protect the connection between device and
browser. Moreover websockets are also supported. DAMN use them for send-
ing data with a low latency that makes realtime monitoring and manipu-
lation of applications possible. Secure websockets are capable of SSL/TSL
encryption [23], which are forced to be used if we want to use HTTPS, since
for security reasons, no downgrade of the protocol is feasible.

6.5.1 WSS

For the communication between the device and the page on the browser,
we are using websockets. Because we are using HTTPS for our page, we
also have to use the secure websocket as the browsers do not allow to use
a unprotected communication ways on a protected page11. In addition it
provides a fast way of communication between our two systems [24] which
is important to have as less overhead as possible.

11http://stackoverflow.com/a/9752145



Chapter 7

DAMN

DAMN is our debugging tool for reversing obfuscated source code. It was
built with obfuscation in mind and therefore it is a specialized reversing tool.
It insists of multiple parts of open source projects which was another reason
to give it back to the open source community as it would not exist without
them. The different projects will be described here in greater detail. After
describing the different parts of the tool itself to get a deeper comprehension
how it works.

7.1 Overview
So far, we described the architecture of Android as well as some IPC mecha-
nisms and the reverse engineering process. With the knowledge of the differ-
ent components we described above, we now come to our tool itself. In the
next sections we will explain detailed how it is exactly working and how the
components are interacting with each other. First we start with the general
structure, the architecture of it and after that we step gradually through all
features of it. Additionally we do a test run with a simple application where
we demonstrate that everything is working. After that, we also investigate
two other applications and describe shortly what we have found with DAMN
and how long it did take.

7.2 Architecture
Let us start with the architecture of the tool to get an overview about the
interaction of the components and a general picture of it. To interact with
the application on the device and also have the opportunity to control its
behavior, we use a HTTP server on the device. This makes it possible to
use the application normally and monitor it on a browser like we see on
this figure 7.1. The advantage of using a browser is that it works on almost
computers or tablets without any additional applications installed. DAMN

44



7. DAMN 45

provides also two ways of connectivity between device and browser.
• USB
• WiFi

USB

A shared library makes it possible to connect the device to another system
via USB port. If someone wants to investigate an application which starts
with the system itself (e.g. NFC Manager) we do not have a valid WiFi
connection. The connection over the USB cable makes it possible to connect
through the browser and control it right before a wifi connection starts.

Currently it is only integrated as a shared library but is not used in
DAMN actively. To use this feature it has to be triggered or implemented
in source code manually.

WiFi

The usual way of using DAMN is over a wifi network. If the device is con-
nected to a wifi hotspot any system in the same wifi can connect to the
device and therefore makes it possible to investigate applications through
it. For more details on the protocol go to section 7.12.

Figure 7.1: DAMN Components Architecture Overview

In the figure 7.2 we see it from the Android architecture perspective. We
choose to splice the components into three layers which are referencing into
the levels of the Android architecture:

• Application Layer
• Runtime Layer
• Native Library Layer
This layers point out how deep DAMN is interacting with the Android

system as it is not only on the top layer as an application. Let us take a



7. DAMN 46

Figure 7.2: DAMN Components Architecture Overview

closer look at the three layers.

7.2.1 Application Layer

In the application layer we find the DAMN application which provides a
very basic user interface where user can select applications that they want
to investigate through our tool. This part will be described more detailed
here 7.4.1.

7.2.2 Runtime Layer

As the runtime differs from the Android versions it could either be Dalvik or
ART which is running on the device. Thanks to Xposed it does not matter
which runtime is used. The Xposed module will get loaded on the boot
process along with Zygote. Once this module is loaded DAMN have the
possibility to interact with every application on the device. More about the
module can be found here 7.8.

7.2.3 Native Library Layer

The layer which is situated on a very low level on Android 3.5 us the native
library layer. Components which are placed here can be started before any
application itself gets started. This makes it possible to start the Civetweb
component very early on the system with the advantage that we also can
investigate applications which are started during the boot process (some



7. DAMN 47

system applications). Combined with the USB library, we can connect a
computer at this very basic stage where the device itself does not have any
Internet connectivity. More information on this layer is described here 7.7.

7.3 Interaction Structure
Another point of view to DAMN is the interaction between the different
components. The tool uses different features to interact through the differ-
ent parts as it can be seen in figure 7.3. There are three basic interaction
mechanisms we are using:

• File
• IPC
• WSS

7.3.1 File

A very simple opportunity is to share information across a file. While basi-
cally everything is a file on a Linux system, what we mean here is to write
information into a basic file which can be read from other processes. This
option is used to store configuration data which has to be accessible through
the investigated application. Because we do not know which permissions the
investigated application have, we need to provide the information in a way
any application can access it.

As any application has access to its own directory where it is installed
on (typically /data/data/<package name>/ ) we put this configuration file
into this location. Because of the Unix file permission system, our DAMN
application needs to create such a file with privileged rights. This is achieved
through SuperSU 6.1 and the change of the accessibility mode of this file to
all (chmod 0666 ). Anytime an application gets loaded, the DAMN Xposed
module will check if a file with the name damn_packages.pkg exists on the
root directory of the application. If this is the case, the file will get read and
all relevant packages will be hooked. This process will be described in more
details in this section 7.5.

7.3.2 IPC

While the transportation of information through a file, as described previ-
ously, can also be an IPC, we mean here the interaction with other processes
on runtime. The conclusion is therefore that the communication through the
file 7.3.1 is a static communication and the IPC we now describe is a more
dynamic one.

The IPCs we use here are the basic ones from the Android system 3.7.



7. DAMN 48

7.3.3 WSS

As we decided to take a second screen solution to interact with the device to
have a more comfortable possibility to control the investigated application,
we also need a way to communicate to it. DAMN starts a simple HTTP
server on the device and offers the opportunity to open a browser on a
different system that is connected to the same network. The server is realized
through Civetweb 6.5 as well as the secured web sockets (WSS 6.5.1).

We use the web socket to interact with the browser since it provides a fast
way of communication. This is essential because it prevents overhead in the
communication which are leading to lags in the application we investigating
actively. Another advantage is that it is well supported in JavaScript. More
about the communication between the device and the browser can be found
here 7.12.

Figure 7.3: Interaction of Components Overview

7.3.4 Communication Trace

There is also a dotted red line in the figure 7.3 above. As previously men-
tioned, there is an active communication and a passive one in which only
configured data is stored. The active communication happens on runtime
and this is the way the communication will flow during the investigation of
an application.



7. DAMN 49

7.4 DAMN User Interface
Since DAMN has two parts where a user can interact with it, we split this
section into the DAMN application user interface and the browser user in-
terface. Both are needed to either set the settings to make an investigation
or to monitor respectively manipulate, the behavior of the investigated ap-
plication.

7.4.1 DAMN Application Activities

To start off with the user interface on the DAMN project, we first have
a look onto the application. Once it is installed and configured correctly,
we can take a look at the installed applications on the device through this
application. If we found an interesting one, we can select it and get more
information about it in a second activity. Let us take a closer look into the
two activities.

List Activity

The first activity that will be opened on start is the list activity which is
printed here 7.4 and here 7.5. It is a pretty simple ViewPager where the
user has the choice between five different pages:

• Downloaded
• System
• Running
• All
• Track
The downloaded page will list all user installed applications, while the

system page shows the applications. To differ between those two possibili-
ties, we read the application info to get the FLAG_SYSTEM 1 value which
indicates whether it is a system application or not. On the running page
we have listed all running application on the device. As the Xposed module
has to be loaded with the application we want to investigate, we have to be
sure that the application does not run or gets restarted. This either can be
made possible by restarting the device or by forcing to kill the application
manually. Obviously, the All page shows all installed applications on the
device. On the Track page we list all applications which the user decided to
investigate.

Every application which is listed as an item can be clicked to get more
details. This opens the detail activity which is described on the next sub-
section.

1http://developer.android.com/reference/android/content/pm/ApplicationInfo.html#FLAG_SYSTEM



7. DAMN 50

Figure 7.4: System Page Figure 7.5: Track Page

Detail Activity

On the detail activity we can take a look at the application we want to
investigate. Besides the icon, name and the package, we also can see all
internal packages of the application 7.6. All packages of the application will
be divided into multiple packages if the first three sub-packages(separated by
a dot) are different. Those divided package items can be selected individually
and give a great opportunity to get more selective. This makes sense on
applications where many packages are used from third party libraries which
we do not want to investigate. Or we already have a clue where interesting
things happen and do not want to have all other packages included too.

Here we can see five packages from this application but we only want to
investigate one of these. With the button on the end we can either save our
selection or untrack the application. The information will be stored on the
package of the investigated application. More details about the configuration
file for each application can be found here 7.5.

7.4.2 DAMN Browser Pages

Having a browser interface for interacting on an application we want to
investigate is very useful. While we can handle the application on the device,
we can get additional information on the browser. To use a browser also gives



7. DAMN 51

Figure 7.6: Detail Activity

us the freedom of using this solution on almost any devices where a browser
is installed on (and supporting web sockets and JavaScript). The next few
subsections will show how we implemented it and how it can be used.

Get Connected

Before we take a look at some applications, we have to connect the device
with the browser. The easiest way of archiving this is to be in the same
wireless network on both, the device and the computer where we use the
browser. If DAMN is running on the device, we only need to get the IP
address of it. It can be found in Settings -> About phone -> Status -> IP
address. On the browser we can now enter this address and we will connect
to the device 7.4.3. After that we should be able to see the start page as in
the next section will be described.

7.4.3 Start Page

The start page should be the first we can see on the browser to be sure
that the connection works. On this figure 7.7 we can see how it looks like.
Because of on the device we have a functional Civetweb server running, we
will get a response on this address and will receive the start page. It does not
matter if we call it directly with SSL/TLS or not since Civetweb redirects



7. DAMN 52

it automatically to a secured connection.

Figure 7.7: Browser Start Page

While the page is processed by the browser, it also starts a web socket
connection to the device to receive commands from it. The state of the
connection can be directly seen on the start page which prints them directly
on the page.

• Connect ...
• Connection error!
• Can’t connect to device!
• Waiting for Applications

Connect

This will be printed when the web socket tries to connect to the device.

Connection Error

Only appears if something went wrong, either on the connection phase or
on a later point of time.

Can’t Connect to Device

If the browser can not get a web socket connection to the device, it will print
this text. This should actually not happen since the displayed page also has
the same origin except this ports are locked over the network.



7. DAMN 53

Waiting for Applications

In case everything works and the connection is established, this text will be
printed. This indicates that we can open now one of the application we want
to investigate and let the browser open a new page which is shown on the
next subsection.

No Web Socket Support

Of course we have to use a browser which supports web sockets. Luckily it
is supported by many browsers nowadays2. Even Android browsers support
them on the latest versions. If a browser is used that do not provide web
socket support, an alert will be raised which informs the user about it.
Switching to a browser with proper web socket support is recommended.

7.4.4 Tracking Page

Now we can directly start to open an application which we want to investi-
gate. This will trigger Civetweb to send a command to the start page with
the purpose to open a new tab in the browser. This new tab is called tracking
page and it is printed in this figure 7.8. In this example we use the Torch
application from CyanogenMod version 11.

Figure 7.8: Browser Track Page

This page is more complex and has different sections for different in-
formation. Let us start with the top section. The first button in the Con-

2http://caniuse.com/#feat=websockets



7. DAMN 54

trol section is the play button. The name already indicates that this will
let the application run like as it would do without getting investigated by
DAMN. The second button is the step button that makes it possible to iter-
ate through the method calls as described here 7.9. On the top right corner,
there is the rule button located. Here we can declare behavior rules which
we will describe here 7.11.

The next section is the Source Code section. It shows the decompiled
source code of the investigated application. Because the decompilation can
not be automated on the device itself, it is possible that there is no source
code available. In this case no code available will be displayed.

On the left side below there is the Parameter and the Return Values
section. Both sections can be edited by the user and show which parameters
or return value are passed through the method.

The only section left is called Fields. It shows all fields that are declared
in the actual class. Although it is not implemented to alter those fields with
DAMN, it would be no problem because the principle would be the same as
on the two described fields previously.

7.5 Configuration File
The Android permission system restrict the file system access of an appli-
cation to another. It is using the DAC mechanism for that 3.6.1. Because
we can not be sure an application has the access permissions to read from
the SD card, we have to find another way to store the individual config-
uration file for each investigated application. A very simple solution is to
store the file on the base of the install directory of the application. The in-
stallation directory can differ but is mostly located on /data/data/<package
name>/3.5.5. Because DAMN also underlies those regulations, we have to
use SuperSU to write into this directory and change the access mode of the
file. Here we have the steps from the code sniped that makes this possible:

Listing 7.1: Snipped of Saving the Configuration File
1 Runtime.getRuntime().exec(new String[]{"su", String.valueOf(

applicationInfo.uid), "cp", tmp.getAbsolutePath(), target.
getAbsolutePath()}).waitFor();

2 Runtime.getRuntime().exec(new String[]{"su", String.valueOf(
applicationInfo.uid), "chmod", "0666", target.getAbsolutePath()}).
waitFor();

The first command copies the temporary file with the configuration to
the root directory of the investigated application. The second one changes
the access mode to 0666 which let any application read and write this file.
With those two commands, the investigated application can read this file
which is important for the Xposed module that gets started when the ap-
plication is loaded and run in the same context. This is a very necessary



7. DAMN 55

part. As soon as the application is started, we are restricted to the same
permissions that the application has. So we have to be carefully which re-
sources we can access. The best concept is to guess that the application has
no additional permissions we can use and therefore we only can use the very
basic permission each of the applications have.

All information will be stored on a single file named damn_packages.pkg
that is declared in the class at.fhooe.mcm.faaaat.XModule. The structure of
this file is very simple. We hold all package names as a String in an ArrayList
which we write as an object into an ObjectOutputStream. On the other way
around, when the investigated application gets loaded, it will read this file
and take a look if any packages are declared in there. For a deeper look into
the loading of an investigated application take a look on this section 7.6.

7.6 Flow of Loading a Tracked Application
Once the user choose an application to investigate and the configuration file
is placed with the proper information, DAMN can read it and hook into
it. This process is heavily bounded on Xposed and its way of functionality
which is described here 6.3. If DAMN is installed and configured, every time
an application gets loaded we check if the configuration file is available on
the root directory of the application. If the file exists and is not empty,
Xposed hook every package which is defined in this file. On this very early
stage we already filter only defined packages. This gives us performance
improvements as well as avoiding uninteresting classes. If the user decides
later on to change the packages, the application has to get killed so that it
has to get loaded again.

Before DAMN starts hooking classes, it calls the newAppStarted JNI
function from the damnserver.so. This will open a new tab on the connected
browser where the user can interact with the investigated application after
hooking is finished. After this call, our Xposed module iterates through every
declared class of the application and checks if the classes were defined in one
of the packages declared in the configuration file 7.5. If this is the case, it
will hook into all constructors and methods in this class.

Because of some performance improvements we parallelize the hooking
process. Those performance improvements are also common on other ap-
plications which could lead to have multiple threads hooked with DAMN.
It is possible to investigate each of those threads, but since most of this
threads are performing small tasks and are dieing afterwards, we decided to
not react on them by open a new browser tab. We only let the first thread
communicate with the browser and ignore all other threads. It would not be
a big deal to implement that every subprocess also gets a new tab on the
browser, but it turned out that this is annoying and does not provide lots
of advantages on most investigated applications.



7. DAMN 56

Figure 7.9: Load Application Flow

7.7 DAMN Server Process
To make this all possible, we need another component which is running on
Android as a daemon process. This process makes use of the shared library
libdamn-server.so and the executable damn-server-exec. The executable will
be triggered by the init process that makes it possible to start it at a very
early stage of the boot process of Android. It makes use of the shared library
to start the Civetweb server that can be accessed at this time.



7. DAMN 57

7.7.1 Communication

As this part of DAMN running before the Android environment is set up
completely, it allows also to investigate system applications or services. The
communication to interact with this library uses JNI. All implementations
done in Java can use the JNI interface which hides the complexity of used
IPCs as pipes.

This server runs in its own process and is isolated from the memory
of other processes like applications. Because of this it is not possible to
use simple function calls from the library to communicate between those
process. To make this possible, we are using a Linux IPC mechanism called
pipes. They make it possible to communicate between the server process
and the investigated application. Communication to the browser interface is
implemented in the server process which makes additional IPCs obsolete.

7.7.2 Document Directory

This server process is a customized Civetweb server. For the communication
over HTTPS it also needs files which will be displayed on the browser. Those
files are stored in the document root directory that consists of the HTML
pages and some images which are used for the representation.

7.8 DAMN Xposed Module
On the previous section we described DAMNs flow of loading an tracked
application. Figure 7.10 shows the flow of DAMNs Xposed module during
investigation of an application.

Figure 7.10: Runtime Flow



7. DAMN 58

7.8.1 Hook Process

Let us look closer to the classes we have implemented. XModule is the first
class that will be informed if a new application gets loaded. It is our defined
Xposed module and checks if the loaded application is a tracked application
of DAMN. In that case the XHookAll class hooks into every constructor
and method of the classed declared in the packages which are defined in the
configuration file 7.5.

7.8.2 Control Flow Architecture

The whole control process of DAMN is implemented in XDAMNHook and
a little helper class XListener. Both classes are communicating with the
DAMNServer which provides a JNI interface for the communication with
the DAMN server that is running as a separated process 7.7. This makes
the complex structure of IPC communication abstracter and simpler to use.

The XDAMNHook class is controlling the application which is tracked
by DAMN. It listens for commands from the browser interface and handles
them. Furthermore it can stop the application at any given hooked method
as well as manipulate values of it. This is realized with Xposed and Java
Reflection features.

In the next section we handle the different states which investigated
applications can have.

7.9 DAMN Runtime States
After loading and hooking all constructors and methods, we can interact on
the browser with the running application and put it into different states.
The very first state will be pause to bring the opportunity to step through
the application at the very beginning. Here are all steps listed:

• Run
• Pause
• Step

7.9.1 Run

If we put the application on this state, we can interact with it on the de-
vice like without having the investigation turned on. Except with a little
performance overhead, we should not face any difference on the behavior.

7.9.2 Pause

As written above, this is the first state on which the investigated application
is put on. In this state, the application is freezing completely and will not



7. DAMN 59

perform any calculations except for subprocesses. Any touch or key inputs
will be ignored until we set the state to run or step again. It is also recom-
mended to set the display timeout to a higher value preventing the device
to change into a locked screen while the application is in this state.

7.9.3 Step

With the stepping feature we have the opportunity to use this tool almost
like a debugger. But since we are not manipulating the source code, we only
can interact on the method level. This means that if we take a step, we only
can step from one method call to another or to the returning from a method.
A short example should bring clarity 7.11.

Figure 7.11: Possible Interaction Points

We can see two examples on this figure. Let us assume that the appli-
cation is on method A and the user switch into the step state. As soon as
method A calls method B, the application will block on the entry point of
method B. The very same would happen if we switch into pause.

Another way would be in the second case, if the user switch into step
state while the application is in method C, it will also block if method C will
return. So basically, we have two interaction points where we can pause the
application. The first is the call of a method and the second is the returning
of a method.

On real applications this can be very nested since a method can call
different methods which also may call further methods and so on. Therefore
we can not expect that the next step will give us the return value of the
actual method.

7.9.4 States of Investigated Application

To sum up this section, we show the possible states on this figure 7.12. As
previously mentioned, if the user switches into pause state it will technically
not differ from switching into the step state.



7. DAMN 60

Figure 7.12: Application States

7.9.5 Obfuscated Applications

We talked earlier about obfuscation 7.5 and how it influences the way of
investigation. DAMN is developed with obfuscation in mind and provides a
different way of investigating such obfuscated applications. The current state
of doing this is to decompile and investigate the obfuscated code. This takes
quiet a long time since the code can be cut up into many different parts and
searching for the interesting parts take its toll. With DAMN we are able to
start the application, switch it back again to play and navigate to a section
where such interesting things happen. If the user is in such a position, he can
switch into the stepping mode and first have the possibility to look where he
is on the code level. This already can give a clue in which classes we could
find interesting parts. The next feature it offers is the stepping through those
methods which shows pretty fast how the methods are interacting with each
other without take a deeper look into the code itself.

This was the original purpose of DAMN but it does not stop here. The
next section will give more information about an additional feature which
can be used to directly test some cases of behavior manipulated values.

7.10 Manipulate the Application
Since now we discussed how we can interact on an application, we want to
give an overview of another feature of DAMN. Because we are using Xposed
for the dynamic interaction with the running application, we can also profit
from the feature of manipulating values. We already gave an introduction
into Xposed and its features and will now explain how it is used in DAMN.

7.10.1 Manipulation of Parameters

The first opportunity we want to explain is the manipulation of the param-
eters which are passed to a method on calling them. If the application we
want to investigate is paused, we can look into the passed parameters on the



7. DAMN 61

browser page. This is shown as a simple JSON (JavaScrip Object Notation3)
format like this:

Listing 7.2: Snipped of Parameters from the Browser Interface
1 {
2 "class": "net.cactii.flash2.TorchService",
3 "method": "onStartCommand",
4 "parameters": [
5 {
6 "2: Integer": 0,
7 "3: Integer": 1,
8 "1: class": "android.content.Intent"
9 }

10 ]
11 }

As we can see, it is a simple JSON structure we used to display the
values. DAMN always will send three key-value pairs, the class, method and
the parameter. Class and method values give detailed information about
which method got called. In the parameter we have a nested JSON object
that give more information about the passed parameters. The keys will gives
details about the position and class. The value of the JSON entry will either
be the value of the class or the class as a string if it is not supported. If
there are no parameters for that method, it will be empty.

If it is a supported class, the value can be manipulated. In the example
above, we could change the second parameter from zero to one. If we would
change the first parameter it will be ignored because the Intent class is not
supported.

7.10.2 Manipulation of Return Value

On the return of a method we also have the opportunity to manipulate the
values. Since Java has one return value maximal this is simpler. Beside this
value, we would also be able to change any other value of the application at
this time. If the method that returns is of type void, we can not change the
return value because it does not exist. Here a short snippet how this looks
on DAMN:

Listing 7.3: Snipped of Return Value from the Browser Interface
1 {
2 "result": {},
3 "class": "net.cactii.flash2.TorchService",
4 "method": "net.cactii.flash2.TorchService"
5 }

In this particular example above, we have a void method that will pass
no return value which we can see if we look at the key-value pair result.

3http://www.json.org/



7. DAMN 62

7.10.3 Manipulatable Classes

Thats it in terms of manipulation of an investigated application. Currently,
only some basic classes are supported. But this can be easily expanded in the
future. If we think about the possibility to strip every class into its essential
parts, it would also be possible to alter custom classes. Here is a list of all
supported classes:

• String
• Integer
• Long
• Boolean
• Float
• Double
• Character
• Byte
• int
• long
• boolean
• float
• double
• char
• byte
• byte array

7.11 Behavior Rules
The possibility to stop the application or resume it as well as the feature to
change values in parameters or the return values makes it handy to use cer-
tain rules to automate some of those actions. Such rules would became very
interesting on multi threading where we also want to control the behavior
of single threads. Another operational area is to automate recurring tasks
as the one we will see in the chapter 8 where we manipulate the value of a
parameter which gets called iteratively.

7.11.1 Structure

The basic idea behind this rules is to have a certain trigger where we can
react on. A trigger activates a rule which is then performed with its defined
actions. Those triggers and actions can also be combined with AND or an
OR operator to define more complex rules.



7. DAMN 63

7.11.2 Triggers

Before we can use rules and make use of actions we need a trigger. Here is
a list of triggers that can be useful:

• Method
• Value
• History

Method

A method can be a trigger if it gets called or is returning because we always
have those two possibilities. To use a method, we also have to declare its
class because a method name is not unique.

Value

Values can also be a trigger but only make sense if we combine it with the
method trigger. Otherwise it would be called every time a parameter or
return value has a specific class and value. As a value could belong to more
than one possible class it make sense to define the class too.

History

Methods can be called from multiple other methods and it is not always
interesting from every of them. With the use of a history trigger we can
declare a method that is calling our defined method where the rule is apply-
ing. That helps to sort out calls of unimportant methods and get a cleaner
output.

7.11.3 Actions

Rules would be useless if we would not have some actions which they could
perform. The following list and describe them afterwards:

• Manipulate
• Log
• Pause

Manipulate

As the name indicates, this action can manipulate the value of either a field,
parameter or return value. This is very useful if we want to alter the behavior
of a loop since we do not want to change it manually on every iteration.



7. DAMN 64

Log

Sometimes it is also interesting to get information at which time something
is called or returning. This can be either achieved by single stepping through
all methods or, a more elegant way, to define a rule with the log action and let
the application run on the device. The logs will be written into the Android
logcat4.

Pause

Since DAMN is kind of a debugger, we also need the opportunity to set
a break point where the application will stop if it is reached. This can be
achieved with the pause action. In combination with the history or value
trigger it makes it to a more fine grained break point mechanism as on most
other debuggers.

7.11.4 Chaining Triggers or Actions

The opportunity to combine one or more triggers as well as actions in one
single rule makes it possible to define complex rules if needed. That can be
very selective and helps to test quickly what impact some changes of param-
eters have on a running application without doing this very time manually.

7.11.5 Current State

Currently those rule base approach is not implemented in our release. Since
it is a nice way to automate some interactions it will be added in the future 9.

7.12 Web Socket Data Exchange Protocol
DAMN uses a browser to make the interaction easier. The communication
between the browser and the Civetweb server is handled with a WSS con-
nection. Different information will be transported with different codes that
the browser can interpret. Let us take a closer look how this information
will be sent and interpreted.

7.12.1 Protocol Structure

Before we explain the different codes which are used in the protocol on the
different pages, we will take a closer look on how its structured. Because
we do not have a lot of different commands, we did not have to use a very
complex protocol. We decided to use the first three characters to distinguish
between commands. The rest of the message is the payload which differs

4http://developer.android.com/tools/help/logcat.html



7. DAMN 65

from command to command and has a variable length. In figure 7.13 we can
see the structure of a message of our protocol in more detail.

Figure 7.13: DAMN Web Socket Protocol Structure

We show the different codes in the next sections bellow. They are sepa-
rated by the two pages we have, the Start and the Tracking page.

7.12.2 Protocol Codes for Start Page

The start page is pretty simple as it is only shown if the device is connected
through a web socket or not. Nevertheless, it also opens new browser tabs
if an application will be opened which gets tracked by DAMN and this will
be triggered by a command.

Code Action
000 open new browser tab

As implied above, the one command on this page is to open a new track-
ing page. This is done if the code is 000 and this will trigger the following
command:

Listing 7.4: JavaScript Command on Code 000
1 window.open('https://'+ window.location.host + '/track.html?' + data);

The data from the command is used to give the tracking page the in-
formation to which application and thread it should connect to. This in-
formation will be handled in the Civetweb implementation and can handle
multiple socket connections.

7.12.3 Protocol Codes for Tracking Page

On the tracking page there are more codes we have to handle. This page is
used to show information about the tracked application and send commands
to interact with it.



7. DAMN 66

Code Action
001 play
002 pause
003 step
004 source code
005 global variables
006 parameters
007 return value
012 close connection

The first three codes will be sent from the browser to the device and
not the other way around. They are control commands to interact with the
tracked application. Another difference between the other controls are that
they will not use any payload since this is not necessary as the code itself is
unique.

All other codes are used to get more information about the application
onto the Tracking page. If the application got decompiled from our script 8.5
the source code of the actual class will be sent with the code 004. This helps
the user to get more information about the class and the method which
was called or is returning. The same applies to the code 005 which shows
the actual defined global variables and fields. If a method gets called, its
parameters will be assigned and displayed with the code 006. Same if the
method returns, it will displayed the return value with 007 if the method
has one. The last defined code is 012, which close the socket connection and
the tab itself. This gets interesting if the multi thread handling is activated
because a lot of tabs will be opened for some small operations and therefore
can be closed automatically if they end.

7.13 Summary
In this chapter we described in detail how we are using different tools and
system mechanisms in DAMN. It should be now clear how this tool is struc-
tured and how it works in Android. To get some further knowledge about
how to use this tool, we provide some sample investigations with this tool
that can be found in the next section.



Chapter 8

Investigating Real World
Applications

So far we declared how DAMN works and what we can handle with it. It
is time to use it on some applications to get a deeper understanding of its
functionalities. But before we start with investigating applications, we want
to give detailed information about the test environment we used.

8.1 Test Environment
Before we start to make some investigations we want to make it possible to
rebuild the test environment to make it possible to everyone to try DAMN.
We listed all equipment and software we used for this project.

8.1.1 Hardware

To rebuild our test environment it should be enough to use the same soft-
ware. But here is the short list what hardware we used too:

• HTC M7
• Samsung N900X

8.1.2 Software Used on Device

More interesting is the listing of the software we are using for our compo-
nents. Let us begin with the list of software on the Android device:

• CyanogenMod 11-20140106-NIGHTLY-m7ul
Android version 4.4.2
Kernel version 3.4.10-CM-gaf19676
SELinux Enforcing

• SuperSu version 2.46

67



8. Investigating Real World Applications 68

• Xposed
app_process version 58
XposedBridge.jar version 54

8.1.3 Software Used on Computer

In addition the software that we use on the computer where only the browser
is actually relevant:

• Linux Mint with KDE x64
Firefox version 42.0
Eclipse Mars.1 Release (4.5.1)

• Android SDK Tools 24.4
• Android SDK Platform 23.0.1
• Android NKD r10e

8.1.4 Used Tools

Beside this, we are also using the following tools with the latest available
source from the repositories:

• d2j-dex2jar1

• jadx2

• adb3

• ndk4

8.2 Setup
The complete source code of DAMN is freely available for non-commercial
usage. It can be found here5. After cloning the repository and importing it
into Eclipse, the IDE will automatically build the source code. In addition
to this build, we also have to build the native sources. This can be done
manually with the NDK command ndk-build 3.10.2 or with a simple script
we provide which also install it directly onto the device 8.1. This script has
to be manually edited to work on every computer, since the paths will differ.
We can also see, that the build commands are pretty simple- in this case the
first two commands in the script. All other commands using the adb 3.10.1
to prepare the device and pushing the new libraries as well as one executable
file onto it.

1https://github.com/pxb1988/dex2jar
2https://github.com/skylot/jadx
3http://developer.android.com/tools/help/adb.html
4http://developer.android.com/tools/sdk/ndk/index.html
5https://github.com/baer-devl/DAMN



8. Investigating Real World Applications 69

Listing 8.1: Build and Push the JNI Parts of DAMN onto the Device
1 #!/bin/bash
2 ~/android-ndk-r10e/ndk-build clean
3 ~/android-ndk-r10e/ndk-build
4
5 adb wait-for-device
6 adb root
7 adb wait-for-device
8 adb remount
9 adb wait-for-device

10
11 adb shell 'rm -f /system/lib/libusb-tethering.so'
12 adb shell 'rm -f /system/lib/libcivetweb.so'
13 adb shell 'rm -f /system/lib/libdamn-server.so'
14 adb shell 'rm -f /system/lib/libdaemonize.so'
15
16 adb push ~/workspace/Eclipse/master/faaaat/obj/local/armeabi/libusb-

tethering.so /system/lib
17 adb push ~/workspace/Eclipse/master/faaaat/obj/local/armeabi/libcivetweb

.so /system/lib
18 adb push ~/workspace/Eclipse/master/faaaat/obj/local/armeabi/libdamn-

server.so /system/lib
19 adb push ~/workspace/Eclipse/master/faaaat/obj/local/armeabi/

libdaemonize.so /system/lib
20 adb push ~/workspace/Eclipse/master/faaaat/obj/local/armeabi/damn-server

-exec /system/bin

We can now already run the application from Eclipse6 which pushes it
onto the device and will start it the first time. The application will also put
the root directory of our Civetweb server in its installation directory. Xposed
should also have notified us already about a new module that is available
and will get active on reboot. But first we have to do some more manual
work.

To get this server started during the boot of Android, we will need to
write this little script onto the device 8.3. We have to place it under the di-
rectory /system/etc/init.d and can give the name 87damn. While the num-
ber is the order in which it will gets started by the init process, the name
afterwards can be anything.

Listing 8.2: Simple Start Script
1 #!/system/bin/sh
2 /system/bin/damn-server-exec /data/data/at.fhooe.mcm.faaaat/files/root/

docroot /data/data/at.fhooe.mcm.faaaat/files/root/ssl_cert.pem /data
/local/tmp &

The only thing this script does is to run the damn-server-exec program
with three parameters. The first one sets the root directory of the Civetweb
documents. The second one tells the program where he can find the SSL

6https://eclipse.org/



8. Investigating Real World Applications 70

certificate for the HTTPS connection and the last one is used for temporary
files like IPC pipes.

If we now list this directory we should see something similar like this:

Listing 8.3: Simple Start Script
1 root@m7ul:/system/etc/init.d # ls
2 00banner
3 50selinuxrelabel
4 87damn
5 90userinit
6 99SuperSUDaemon
7 root@m7ul:/system/etc/init.d #

Here we can also see the 00banner which is called in a very early stage
(can be seen if we look at the logcat of the device from the boot process on) as
well as the SuperSUDaemon which also gets started with this mechanism.
We already explained SuperSU here 6.1 and showed that it is using also
other techniques to start on boot process. This method may not work on
every device and therefore has to be adapted individually. If someone have
trouble using this solution on his own device, take a look at SuperSU and
its solutions 6.1.

After a reboot everything should work as expected. This can be tested if
we try to connect to the device in the browser. To get the IP address of the
device we have to take a look at the settings under About phone -> Status
-> IP address. Put this address into the browser and the start page should
be displayed.

8.3 Simple System Application
After setting up the environment for DAMN we will test the functionalities
on a simple application. On CyanogenMod there is a little application pre-
installed named Torch which we will use for this purpose. Beside two options,
the main functionality this application has is to turn on and off the flash
light of the device by touching the light bulb icon on the screen which
this figure 8.1 shows. But before we can investigate it, we have to set the
configuration in the DAMN application. So let us start DAMN and choose
the Torch application which will open the detail activity. In this case we
only see one package called net.cactii.flash2. Tick this package and press
the Track button. Now it should look like this figure 8.2.

One very handy feature on CyanogenMod is hidden in the Developer
options, called Kill app back button. If we took a look at the Torch application
before we tick it in DAMN, we have first to kill it in case we started it
previously. This is important because our Xposed module will need to get
loaded with the application we want to investigate. If this is not the case, we
can not manipulate it. That can be done by open the application and long



8. Investigating Real World Applications 71

Figure 8.1: CyanogenMod Torch Application

press the back button. After a short amount of time it will be closed and
a short message will shown up that it was killed. This feature gives us the
quick opportunity to kill an already loaded application without restarting
the whole system.

The next step is to load the Torch application. But before we do that,
let us open the browser on the computer and connect to the start page of
our device. It should print Waiting for Applications which indicates that we
are ready to open the Torch. On open the application on the device, a new
tab will be created on the browser. The first few seconds it will be blank,
this is where Xposed hooks all methods from the chosen packages. After
that we can see a rather black screen on the device and some information
on the browser 8.3. The most important information is the JSON object on
the parameter section which should look like this:

Listing 8.4: Frist Parameters of Torch
1 {
2 "method": "net.cactii.flash2.MainActivity$1",
3 "parameters": [
4 {
5 "1: class": "net.cactii.flash2.MainActivity"
6 }
7 ]
8 }



8. Investigating Real World Applications 72

Figure 8.2: Torch in DAMN Detail Activity

We can see that the first method which gets called on this application is
the MainActivity in the package net.cactii.flash2. The only parameter which
gets passed has the same class as where the method is declared in. We can
also see that there are no fields declared and no source code is available. If we
now press the play button in the browser, the application should continue as
normal. Now we can also see the last return values in the return section. By
pressing the light bulb image on the application, we can try if every thing
works. The flash light should now simply turn on and off by pressing just
like without investigating it.

Let us debug this application with DAMN. Be sure that the flash light
is turned off and press pause in the browser. The only thing which should
change is the icon of the pressed image on the browser. Nothing else should
happen. Now we have to press the light bulb image again. What happens is,
that we now provide an entry point for DAMN by reacting to a call which
we triggered by pressing. In this particular case we can see in the browser,
that the onClick method gets called. Nothing special happens here, so let us
proceed by pressing step on the browser. We can recognize that this method
will return without any value (seems to be a void method). Step again. Now
we should see that the image has changed into an active state but the flash
light is still off. Let us continue stepping till we can see that the flash light
turn on. This should happen when the method setFlashMode with a integer



8. Investigating Real World Applications 73

parameter is called. This integer with the value one will tell the flash light
to turn on. Step over it and it should now shine. Since this application will
call this method periodically we want to try to step again until this method
gets called. But this time we will test the functionality to manipulate a
parameter by editing the integer in the parameter section and change the
value from one into a zero. By pressing again the step button, we should
now see that the flash light is turned off without changed something on the
device. That was the first succeeded manipulation of an application with
DAMN. Let us proceed the application by pressing the play button again
and stop this application.

This was a very basic example, but it shows how powerful DAMN can
be. We did not even had the source code of this application but we easily
found where the interesting parts are and also could manipulate them. We
also could try to enter other values instead of zero and one and look what
happens but for a simple example it should be enough.

Figure 8.3: Torch Application in Browser

But why did we not see any source code? Well, to be able to look at the
source code of the application, we first have to decompile it. Unfortunately
almost all decompiler use closed source libraries which are not compatible
with the ARM architecture. If we also want to see the source code in the
browser, we have to do a little manual work on the computer. This can be
achieved by using this script:



8. Investigating Real World Applications 74

Listing 8.5: Decompiler Script apk2damn
1 #!/bin/bash
2
3 if [ $# -le 1 ]
4 then
5 echo -e "usage:\tapk2damn <path to apk> <path to app installation root

dir>"
6 exit 1
7 fi
8
9 adb wait-for-device

10 adb root
11 adb wait-for-device
12
13 adb pull $1 app.apk
14
15 mkdir out
16 jadx --deobf -d out app.apk
17
18 adb push out $2
19
20 rm -rf out out.jar app.apk

We have to be sure that every single tool we use in this script is available
on the Linux environment. If this is the case, we could now test our script
with the following commands on the shell where the first command is used
to make our script runnable:

Listing 8.6: Run Decompiler Script
1 ~/tmp/ > chmod +x apk2damn
2 ~/tmp/ > ./apk2damn /system/app/Torch.apk /data/data/net.cactii.flash2/

Let us rerun our previous test with the Torch application and we should
be able to see the decompiled source code in the browser as well 8.4. Now
we have combined the advantages of dynamic analysis with the advantages
of static analysis features successfully. With the available source code we
can analyze a specific method in more detail because we can see what it is
supposed to do.

8.4 Third Party Applications
While investigating such a small application like Torch is pretty simple, we
also want to investigate two applications from the Play Store. Because we do
not have the intent to blame a specific application we changed the naming
of both applications we want to investigate. As quiz applications makes a
lot of fun we decided to choose two different ones and take a deeper look
into it.



8. Investigating Real World Applications 75

Figure 8.4: Torch Application in Browser

8.4.1 Quiz Application A

Let us prepare DAMN for investigating the first application. For anonymity
reasons we will call this application Quiz A. After installing it from the Play
Store we first start the application to get familiar with it. After a while
we can go to DAMN and open Quiz A in the detail view. First what we
recognize is, that it takes quite some time until the view opens. The reason
for that is easy to see if we look at the size of packages in the list as this figure
shows 8.5. Here we can see very strong obfuscation in action. It has almost
200.000 constructors and methods which DAMN hooks. This huge amount
of hooks can cause problems. First of all, we could run into low memory
which would slow down everything and may crash the whole application.
Luckily this is not the case here. The second problem is also a performance
issue. Because of the huge amount of hooks which always gets processed by
DAMN, it can slow down the application behavior quickly. Fortunately, we
have a fast device where we do not feel much of this performance issue. A
bigger problem could be that some of the classes we want to hook will not
be hooked at all because they simply run out of time. Since there are some
hooks which take a huge amount of time, we build in a time out. While
this helps to hook smaller applications in a reasonable time, it can cause
problems on very big one like Quiz A.



8. Investigating Real World Applications 76

Figure 8.5: Quiz A Detail View

8.4.2 Investigate Quiz A

In a quiz application, the most important thing is the question and its
possible answers. We want to investigate how the question gets processed.
We want to clarify the following questions:

• How is the question loaded?
• How is the process of answering?
• Can we have influence on it?
• What can we do against this?
The reason why we want to clarify this question is, that we want to be

sure that it is almost not possible to cheat on it. This is a very difficult prob-
lem in case of quiz applications because a very strong security mechanism
could lead to weak usability.

Before we start, we will also run the apk2damn script to get all decom-
piled source code onto the device and therefore on the browser. Afterwards
we can start right away to the first question.

How is the Question Loaded?

This should be one of the first question we should determine. It will give us
the idea of how this system is constructed and how we can manipulate it.



8. Investigating Real World Applications 77

Let us start the application as well as a new game. Before we try to answer
the first question on the quiz, we press the pause button in the browser so
that we can step through the single methods. Because of the huge amount of
methods, this can take a while till we reach the interesting parts. But since
we directly stepped into the point in the source where the first question is
raised, it does not take too long.

After some calculations and passing of data about the device itself (An-
droid version, device manufacturer, IMEI (International Mobile Equipment
Identity)) we can see that some strings are passed which looks like a question
and some possible answers. By stepping further, we can also detect which
class will be used to store this information.

We also spotted that the questions are stored locally in a sqlite7 database.
Since we have root access to the device, we can also investigate this databases
directly. After some more investigations on the Shell where we use the build
in sqlite program to read this databases, we figured out that there is a table
where a lot of questions where stored on. But they are encrypted so we can
not simply read it. Of course, we could look through the source where the
questions get decrypted and use this information to decrypt all information
in this database, but since we have directly access to the application we do
not need this. As the application have to take care about decrypting the
information before it will be displayed, we can simply use the information
there.

How is the Process of Answering?

After we have investigate how the question is loaded, we will check how the
process of answering will be. Unfortunately we can not simply show a screen
shot of Quiz A because anyone would immediately know which application
it is. But for a better understanding we will describe how the displayed
information will look and what possibilities a user have.

Every question we get will be displayed on top of the screen and we have
four possible answers which we can choose by pressing them. This has to be
done in a certain time or the question will be closed and we cannot answer
it anymore. This is pretty much the same on many quiz applications and
therefore expectable. Anyway, to get a better idea of it we made a abstract
image of a simple quiz activity 8.6. This abstract picture also applies on quiz
B.

The time for answering seems to get processed by a thread which we
do not access (since multiple threads would be simple unproductive to in-
vestigate as described earlier 7.6). Luckily, if we click on one of the answer
buttons, we will hook into the onClick event. From here we can see how the
check mechanism works which decides if a answer is correct or not. This is
very interesting on this application, because it seems to check if the chosen

7https://www.sqlite.org/



8. Investigating Real World Applications 78

Figure 8.6: Abstract Quiz Question

answer is identical with the first possible answer from the database. That
info combined with the knowledge that all possible answers will be randomly
placed on the four buttons only leads to one conclusion, the right answer is
always the first entry of the four possible answers stored in the database and
on the object where the question is mapped on. After processing some more
questions we can confirm that. This directly leads us to the next question
we want to answer now.

Can We Have Influence on it?

Well, as we have the opportunity to manipulate the application as it is run-
ning on the device should already answer this question. Beside this, we have
to answer how we influence it. There would be multiple ways of doing this.
One could be to manipulate the timer and have infinite time to answer the
question. While additional time could be useful, directly choose the right
answer would be preferable.

To archive this, we can take a look at the method which check if the
answer is correct. Let us take a look at a code snipped which does that:



8. Investigating Real World Applications 79

Listing 8.7: Answer Processing on Quiz A
1 ...
2
3 Iterator localIterator2 = this.xU.iterator();
4 while (localIterator2.hasNext())
5 {
6 wR localwR4 = (wR)localIterator2.next();
7 if (localwR4.b)
8 {
9 if ((i3 != 0) || (j == 0))

10 {
11 int i4;
12 if (localwR4.a.b == wY.a)
13 i4 = 1;
14 else
15 i4 = 0;
16 if (i4 != 0)
17 localwR4.setCorrect();
18 else
19 localwR4.setWrong();
20 }
21 }
22 }
23
24 ...
25

The first thing what everyone can perceives is that this is obfuscated
source code which makes it really hard to understand. Thankfully DAMN
made it easy to find this code section in a class out of almost 200.000 classes.
On line twelve it gets decided if the chosen answer is correct or not. It simply
tests if both values are equal.

If we now simply set localwR4.a.b to the same value as wY.a every time
the onClick method in o.xa gets called, we choose the correct answer. This
can either be done manually every time it is called with DAMN or we can
write a Xposed module for this special case. Once it is loaded we can play
against a competitor and be sure that we, no matter which answer we chose,
get the correct one.

What Can We do Against This?

Now we know how easily we can find weaknesses in an application with
DAMN, it is time to think what the developer could do against this. We
saw that they already tried to add some more protection into the applica-
tion because they encrypt the stored questions locally and use a very good
obfuscation. Before we answer that question, let us try to investigate the
other application in the next section.



8. Investigating Real World Applications 80

8.4.3 Quiz Application B

The proceeding is pretty much the same as on Quiz A. We installed Quiz B
from the Play Store onto the device and open DAMN to set the settings. As
previously we should again ask questions which we should analyze during
this investigation. To be comparable with Quiz A we use the same tasks:

• How is the question loaded?
• How is the process of answering?
• Can we have influence on it?
• What can we do against this?
Again, we use the apk2damn 8.1 script to decompile the application to

directly investigate the source code in the browser. The structure of the dis-
played question is pretty the same as in Quiz A. There is one question phrase
and four possible answers which can be pressed. After a short adoption time
to get used to Quiz B we are ready to clarify the first question.

How is the Question Loaded?

The proceeding is the very same as on the other applications which we
want to investigate. We connect a browser with DAMN and press play after
hooking all methods. Now we navigate to a new game against a random
player and press pause on beginning of the game.

While we step through the application we could see how Quiz B is using
the GCM (Google Cloud Messenger)8 to communicate with a server to get
new questions. It also uses a GSON 9 class to extract JSON into Java objects,
and vice versa10. In differ to the first quiz application which stored a few
questions locally, this application will load every question from the server.

Another difference is that the application does not receive the right an-
swer in this step. Therefore we can not extract the information which of the
possible answers is correct.

How is the Process of Answering?

As on Quiz A, we can press one of the four possible answers to answer the
question. Of course, on pressing one of the answers the onClick method is
raised. This method figures out how long it took to answer the question in
milliseconds and which of the four answers was chosen. After that, it calls
the answerQuestion method which is shown in the following listing:

8https://developers.google.com/cloud-messaging/gcm
9https://github.com/google/gson

10https://github.com/google/gson



8. Investigating Real World Applications 81

Listing 8.8: Answer Processing on Quiz B
1 ...
2
3 private void answerQuestion(int paramInt, long paramLong)
4 {
5 if (getActivity() == null)
6 return;
7 showProgress();
8 ApiRequests localApiRequests = (ApiRequests)ApiHelper.

generateBuilder(getActivity()).create(ApiRequests.class);
9 AnswerRequest localAnswerRequest = new AnswerRequest(paramInt,

paramLong);
10 localApiRequests.answerQuestion(this.mGameId, this.mQuestionIndex,

localAnswerRequest, new Callback()
11 {
12 public void failure(RetrofitError paramAnonymousRetrofitError)
13 {
14 QuestionFragment.this.hideProgress();
15 QuestionFragment.this.showError(paramAnonymousRetrofitError);
16 }
17
18 public void success(GameResponse paramAnonymousGameResponse, Response

paramAnonymousResponse)
19 {
20 QuestionFragment.this.hideProgress();
21 QuestionFragment.this.showCorrectAnswer(paramAnonymousGameResponse);
22 }
23 });
24 }
25
26 ...
27

Beside the process of answering the question, we can also see that the
source code is much more readable as on the previous application. They did
not use obfuscation and by looking at the logcat, they did not even turn
debugging off.

This method shows how the application proceeds the answer of the user.
As mentioned before, the integer value on the parameters is the index of
the pressed button (0 - 3) and the long value is the time it took to an-
swer. This is used to create a API request onto the server with the gameId
and questionIndex which give some additional information about the actual
game. An additional parameter is the a callback method which gets raised
on server reply which either gives an error or the correct answer.

Can We Have Influence on it?

Before we do not receive the correct answer from the server, we have no
option to get the correct answer from the application. This makes it much
harder to manipulate it and give the correct answer right away like in Quiz



8. Investigating Real World Applications 82

A. But we could try to change the time value to manipulate the timeout of
answering the question. Here we can see the countdown implementation:

Listing 8.9: Countdown Quiz B
1 ...
2
3 private void countDown(long paramLong)
4 {
5 if (this.mCountDownRunning)
6 {
7 if (paramLong > -2L)
8 break label83;
9 this.mCountDownRunning = false;

10 answerQuestion(0, 12000L);
11 this.mViews.tvCountDown.setBackgroundResource(2130837635);
12 }
13 while (true)
14 {
15
16 ...
17

This gets called with the remaining time and can be easily manipulate
by setting this value to a higher initial value. As a result, now we have time
enough to do whatever helps us to answer the question correctly. The only
thing what is left is to manipulate the answer time on the answerQuestion
method. Let us change it to five seconds which is in the middle of the possible
time range to answer the question.

Unfortunately, they also check at which time the application asked the
server for a new question and the timeout on the server also closes the ques-
tion nevertheless we change the answer time. We tried a few more tricks but
the server implementation checked if the answer from the device is plausible
and do not react on manipulated values.

What can We do Against This?

This question is a little bit obsolete here because they did a very good job.
Although we had access to the source code and the possibility to manipulate
the behavior we were not able to change the result.

But what about the obfuscation leak? As we can see in the reversed code,
they did not use obfuscation but they where able to use other mechanisms to
secure the application. Their design of how the data gets processed through
the device and the server where correct and do not have any disadvantage
of not using obfuscation.

And how to secure Quiz A finally? As they use another design as in this
application it will be pretty hard to protect against such an attack. But the
question should also be if it makes sense to secure a quiz application in a
way that it is not manipulatable? Since we can not and moreover do not



8. Investigating Real World Applications 83

answer such a question this has to be answered by a developer of such an
application itself.

8.5 Recap
We investigated two quiz applications with DAMN and showed the result in
this chapter. Our tool shows that the obfuscation which Quiz A was using
was not strong enough to protect the application from being manipulated.
Quiz B did not use obfuscation but it was designed proper and we did not
have the chance that our manipulations have any impact.

This is only a short investigation but it confirms what we already assume,
that obfuscation do not bring any additional protection to an application
in terms of security. It only makes it harder to understand the source but
dynamic manipulation tools like DAMN can bypass this.



Chapter 9

Future Work

During the implementation of DAMN we had faced a few problems we did
not expect. Because we want to make it possible to investigate every appli-
cation including system applications, DAMN operates on a very low level of
the Android system where typical communication techniques between ap-
plications do not work. Fortunately we could rely on the Linux IPC features
to solve this problems. Some of the described features are not fully imple-
mented and others have the potential to get improved for a better usability.
The next sections will pick some parts of DAMN and describe the future
steps on them.

9.1 Behavior Rules
We described the idea of behavior rules that supports to automate some
features of DAMN 7.11. This feature can be very powerful and the imple-
mentation is planned to be one of the next steps.

9.2 USB Tethering
Another feature we only described very shortly in this thesis was the com-
munication over USB 7.2. We already implemented a native library with the
inherent JNI interface to control this from the Java world. This feature can
be triggered as well at a very early stage on the boot process because it does
not rely on any Android specific components and gives the opportunity to
investigate system applications that are started during the boot process. As
most parts of this feature already are implemented we only have to add an
option on the GUI to set this.

84



9. Future Work 85

9.3 Multi Threading
Typical Android applications will have multiple threads to perform their
purpose. Although DAMN supports multiple threads they will not be dis-
played in the browser because if every single thread will open a new tabu-
lator it will be pretty unusable. We need some other way of displaying such
threads that will not upset the user.

9.4 Stability
DAMN runs stable on most investigated applications. There are still prob-
lems in the hooking process from time to time which causes the tool to crash.
It will need some further investigations to make it more stable.

9.5 Outlook
Our tool brings a new possibility to investigate applications whether they are
obfuscated or not. As it is an open source project which is public available
everyone can extend DAMN and bring new features into it. Other users of
it may find further features or add more stability into this project. We look
forward and hope a community of developers and we will actively improve
this project further.



Chapter 10

Conclusion

We were developing DAMN with the purpose to combine static and dy-
namic analysis techniques into one tool to support the manual investigation
of applications. The implemented tool provides a new way of investigating
applications as it is possible to interact with it on the device while we can
stop it at any given time. This helps to find code sections which are inter-
esting in a reasonable of time. It can show its full potential on applications
which uses strong obfuscation that have blown up the count of their classes
and methods drastically. Furthermore, it can also manage other protection
techniques an application can make use of as for example the protection of
stored data through encryption. As the dynamic analysis parts of DAMN
can investigate a running application, it is possible to read the values which
are passed between method calls. As the data has to be encrypted at a cer-
tain point in code we can read those values directly. Manipulating those
values are another feature DAMN provides and make it possible to test the
runtime behavior on changed values.

Another statement DAMN can confirm is that security through obscu-
rity is not guaranteed and should not be practiced. As DAMN provides a
comfortable way of handling obfuscated applications it showed that the ob-
fuscated code does not add security to an application. The same applies to
Android applications which put some logical parts into native libraries to
protect them for revering. Although this is not supported by DAMN it does
nothing else than shifting the actual problem onto another level and do not
provide a solution to fix it.

All those features makes DAMN a powerful investigation tool for ana-
lyzing Android applications.

86



Appendix A

Content of CD-ROM

Format: CD-ROM, Single Layer, ISO9660-Format

A.1 PDF-Files
Pfad: /

DAMN.pdf . . . . . . . Master Thesis

A.2 Others-Files
Pfad: /stuff

android-distribution.ods Androids distribution pie chart document

A.3 Image-Files
Pfad: /images

android-arch.png . . . . illustration of Android architecture
android-distribution.png pie chart of distributed Android versions
damn-arch-v2.png . . . illustration of DAMNs interaction

components
damn-components-arch.png illustration of the layered structure of

DAMN
damn-load-app.png . . illustration of loading process
damn-states.png . . . . illustration of states of an investigated

application
damn-stepping.png . . . illustration of DAMNs possible interaction

points

87

/
DAMN.pdf
/stuff
android-distribution.ods
/images
android-arch.png
android-distribution.png
damn-arch-v2.png
damn-components-arch.png
damn-load-app.png
damn-states.png
damn-stepping.png


A. Content of CD-ROM 88

damn-physical-view.png illustration of the physical view of DAMNs
components

damn-protocol.png . . . illustration of DAMN WSS protocol
damn-xposed-arch.png . illustration of Xposed structure in DAMN
quiz-abstract.png . . . . illustration of a quiz application
screenshot-detail-browser.png screenshot of DAMNs detail activity -

browser
screenshot-list-system.png screenshot of DAMNs list activity - system
screenshot-list-tracked.png screenshot of DAMNs list activity - tracked
snapshot-browser-fields.png snapshot of DAMNs tracking page

separated
snapshot-browser-index.png snapshot of DAMNs index page
snapshot-browser-track-torch-1.png snapshot of DAMNs tracking page

with Torch application - 1
snapshot-browser-track-torch-4.png snapshot of DAMNs tracking page

with Torch application - 2
screenshot-detail-torch.png screenshot of DAMNs detail activity with

Torch application
screenshot-obfuscated-packages.png screenshot of DAMNs detail

activity obfuscated packages
screenshot-torch.png . . screenshot of Torch application
screenshot-xposed-modules.png screenshot of Xposed Installer -

modules

A.4 Implementation-Files
Pfad: /DAMN

assets . . . . . . . . . . assets directory
jni . . . . . . . . . . . . JNI directory
res . . . . . . . . . . . . resource directory
src . . . . . . . . . . . . source directory
AndroidManifest.xml . . Androids Manifest file
build-android.sh . . . . JNI build script
clean-android.sh . . . . JNI clean script
ic_launcher-web.png . . DAMNs launcher icon
lint.xml . . . . . . . . . lint file
proguard-project.txt . . proguard config file
project.properties . . . . property file

damn-physical-view.png
damn-protocol.png
damn-xposed-arch.png
quiz-abstract.png
screenshot-detail-browser.png
screenshot-list-system.png
screenshot-list-tracked.png
snapshot-browser-fields.png
snapshot-browser-index.png
snapshot-browser-track-torch-1.png
snapshot-browser-track-torch-4.png
screenshot-detail-torch.png
screenshot-obfuscated-packages.png
screenshot-torch.png
screenshot-xposed-modules.png
/DAMN
assets
jni
res
src
AndroidManifest.xml
build-android.sh
clean-android.sh
ic_launcher-web.png
lint.xml
proguard-project.txt
project.properties


Special Terms

ADB Android Debugging Bridge. 18
API Application Programming Interface. 4
ART ART is a runtime environment of Android. 12
BASH Bourne-Again SHell. 42
Binder is a Android specific IPC mechanism. 17
C++ is a programming language. 11
Civetweb is a native open source web server. 42
C is a programming language. 11
DAC is an access control mechanism. 15
Dalvik is a runtime environment of Android. 12
FIFO is a named-pipe. 16
IPC used to communicate between processes. 15
JD-Core is a Java decompiler. 22
JNI is used to communicate between Java and native code. 9
JSON JavaScrip Object Notation. 61
Java Virtual Machine runs Java applications. 9
Java is a programming language. 9
Linux is an operating system. 47
MAC is an access control mechanism. 15
NDK Native Development Kit. 18
Play Store is the Android Application Market. 5
Reflection gives information of a running Java application. 9
SDK Software Development Kit. 18
SELinux is a MAC access control mechanism. 15
SuperSU manages privileged access on a rooted device. 37
Unix is an operating system. 9
Xposed is a dynamic manipulation tool. 39
Zygote starts every Android application with a fork of itself. 18
dex is a Dalvik executable file. 12
dex is an optimized Dalvik executable file. 12

89



List of terms 90

init is a process which starts other processes on boot. 11
jadx is a Android decompiler. 23
kernel is the fundamental part of Unix based operating system. 10
named-pipes is a IPC mechanism. 16
obfuscation is used to makes it hard to analyze reversed source code. 26
ptrace is a Unix system call which used to manipulate a process. 4
root is privileged access on a Linux system from the root user. 37
smali code is a disassembler code named after the the baksmali project. 4
socket is a IPC mechanism. 16
static analysis is the process of analyze source code. 32



References

Literature
[1] Fabrice Bellard. “QEMU open source processor emulator”. In: URL:

http://www.qemu.org (2007) (cit. on p. 5).
[2] D.P. Bovet and M. Cesati. Understanding the Linux Kernel. O’Reilly

Media, 2005. url: https ://books.google .at/books? id=h0lltXyJ8aIC
(cit. on p. 17).

[3] D. Chell et al. The Mobile Application Hacker’s Handbook. Wiley, 2015.
url: http : / / books . google . de / books ? id = 5gVhBgAAQBAJ (cit. on
pp. 14, 20).

[4] Christian Collberg, Clark Thomborson, and Douglas Low. A taxonomy
of obfuscating transformations. Tech. rep. Department of Computer
Science, The University of Auckland, New Zealand, 1997 (cit. on p. 27).

[5] Joshua J. Drake et al. Android Hacker’s Handbook. 1st. Wiley Pub-
lishing, 2014 (cit. on pp. 5, 16, 32, 33).

[6] Thomas Eder et al. “Ananas-a framework for analyzing android appli-
cations”. In: Availability, Reliability and Security (ARES), 2013 Eighth
International Conference on. IEEE. 2013, pp. 711–719 (cit. on p. 5).

[7] David Ehringer. “The dalvik virtual machine architecture”. In: Techn.
report (March 2010) 4 (2010) (cit. on p. 22).

[8] N. Elenkov. Android Security Internals: An In-Depth Guide to An-
droid’s Security Architecture. No Starch Press, 2014. url: https ://
books.google.at/books?id=y11NBQAAQBAJ (cit. on pp. 13, 15, 18).

[9] William Enck et al. “A Study of Android Application Security.” In:
USENIX security symposium. Vol. 2. 2011, p. 2 (cit. on p. 23).

[10] William Enck et al. “TaintDroid: an information-flow tracking system
for realtime privacy monitoring on smartphones”. In: ACM Transac-
tions on Computer Systems (TOCS) 32.2 (2014), p. 5 (cit. on p. 3).

[11] Pau Oliva Fora. “Beginners Guide to Reverse Engineering Android
Apps”. In: RSA Conference. 2014 (cit. on pp. 21, 22).

91

https://books.google.at/books?id=h0lltXyJ8aIC
http://books.google.de/books?id=5gVhBgAAQBAJ
https://books.google.at/books?id=y11NBQAAQBAJ
https://books.google.at/books?id=y11NBQAAQBAJ


References 92

[12] A. Hoog. Android Forensics: Investigation, Analysis and Mobile Se-
curity for Google Android. Android Forensics: Investigation, Analysis,
and Mobile Security for Google Android. Elsevier Science, 2011. url:
https://books.google.at/books?id=i-yWIVd4z7MC (cit. on p. 18).

[13] Peter Hornyack et al. “These aren’t the droids you’re looking for:
retrofitting android to protect data from imperious applications”. In:
Proceedings of the 18th ACM conference on Computer and communi-
cations security. ACM. 2011, pp. 639–652 (cit. on p. 3).

[14] Martina Lindorfer et al. “ANDRUBIS-1,000,000 Apps Later: A View
on Current Android Malware Behaviors”. In: Proceedings of the the 3rd
International Workshop on Building Analysis Datasets and Gathering
Experience Returns for Security (BADGERS). 2014 (cit. on p. 5).

[15] Robert Love et al. Linux Kernel Development Second Edition. Novell
Press: Sams Publishing, 2005 (cit. on p. 10).

[16] G. Nolan. Decompiling Android. SpringerLink : Bücher. Apress, 2012.
url: https : / /books . google . at /books ? id=WAaJEN4ZI - QC (cit. on
p. 28).

[17] Damien Octeau, Somesh Jha, and Patrick McDaniel. “Retargeting An-
droid applications to Java bytecode”. In: Proceedings of the ACM SIG-
SOFT 20th International Symposium on the Foundations of Software
Engineering. ACM. 2012, p. 6 (cit. on p. 23).

[18] Pradeep Padala. “Playing with ptrace, Part I”. In: Linux Journal
2002.103 (2002), p. 5 (cit. on p. 4).

[19] Nicholas J Percoco and Sean Schulte. “Adventures in bouncerland”.
In: Black Hat USA (2012) (cit. on p. 5).

[20] Y. Shi. Virtual Machine Showdown: Stack Versus Registers. Trin-
ity College, 2007. url: https : / / books . google . at / books ? id =
41ZtMwEACAAJ (cit. on p. 12).

[21] Michael Spreitzenbarth et al. “Mobile-sandbox: having a deeper look
into android applications”. In: Proceedings of the 28th Annual ACM
Symposium on Applied Computing. ACM. 2013, pp. 1808–1815 (cit. on
p. 4).

[22] Christian Ullenboom. Java ist auch eine Insel: Programmieren mit der
Java Standard Edition Version 6;[das umfassende Handbuch; aktuell
zu Java 6; DVD-ROM inkl. Openbook-Bibliothek (4000 Seiten), 300
Aufgaben und Lösungen, Java 6 und Eclipse 3.2, viele Zusatztools].
Galileo Press, 2006 (cit. on p. 9).

[23] Vanessa Wang, Frank Salim, and Peter Moskovits. “Introduction to
HTML5 WebSocket”. In: The Definitive Guide to HTML5 WebSocket.
Springer, 2013, pp. 1–12 (cit. on p. 43).

https://books.google.at/books?id=i-yWIVd4z7MC
https://books.google.at/books?id=WAaJEN4ZI-QC
https://books.google.at/books?id=41ZtMwEACAAJ
https://books.google.at/books?id=41ZtMwEACAAJ


References 93

[24] Vanessa Wang, Frank Salim, and Peter Moskovits. The definitive guide
to HTML5 WebSocket. Vol. 1. Springer, 2013 (cit. on p. 43).

[25] Lukas Weichselbaum et al. “Andrubis: Android malware under the
magnifying glass”. In: Vienna University of Technology, Tech. Rep.
TRISECLAB-0414-001 (2014) (cit. on p. 5).

[26] Rubin Xu, Hassen Saïdi, and Ross Anderson. “Aurasium: Practical
Policy Enforcement for Android Applications.” In: USENIX Security
Symposium. 2012, pp. 539–552 (cit. on p. 4).

[27] Lok-Kwong Yan and Heng Yin. “DroidScope: Seamlessly Reconstruct-
ing the OS and Dalvik Semantic Views for Dynamic Android Malware
Analysis.” In: USENIX security symposium. 2012, pp. 569–584 (cit. on
p. 4).

[28] Min Zheng, Mingshen Sun, and John Lui. “DroidTrace: A ptrace based
Android dynamic analysis system with forward execution capabil-
ity”. In: Wireless Communications and Mobile Computing Conference
(IWCMC), 2014 International. IEEE. 2014, pp. 128–133 (cit. on p. 4).

Online sources
[29] Inc. IDC Research. Smartphone OS Market Share, 2015 Q2 @ON-

LINE. Nov. 2015. url: www.idc.com/prodserv/smartphone-os-market-
share.jsp (cit. on p. 7).

[30] Jon Oberheide and Charlie Miller. Smartphone OS Market Share, 2015
Q2 @ONLINE. 2012. url: http://diyhpl.us/∼bryan/papers2/security/
android/summercon12-bouncer.pdf (cit. on p. 5).

www.idc.com/prodserv/smartphone-os-market-share.jsp
www.idc.com/prodserv/smartphone-os-market-share.jsp
http://diyhpl.us/~bryan/papers2/security/android/summercon12-bouncer.pdf
http://diyhpl.us/~bryan/papers2/security/android/summercon12-bouncer.pdf

	Declaration
	Preface
	Abstract
	Kurzfassung
	Introduction
	Related Work
	TaintDroid
	AppFence
	DroidScope
	DroidTrace
	API Monitor & Aurasium
	Mobile-Sandbox
	ANANAS
	ANDRUBIS
	Google Bouncer
	Summary

	Android
	Versions
	Distribution
	Java
	Reflection
	JNI

	Linux
	Architecture
	Kernel
	Init
	Runtime
	System Services
	Applications
	Application Permissions

	Access Control on Android
	Discretionary Access Control
	Mandatory Access Control
	SELinux

	IPC
	Sockets
	Named Pipes
	Binder

	Boot Process
	Zygote
	Android Tools
	ADB
	NDK-Build


	Reverse Engineering
	General Reverse Engineering Term
	Disassembler
	Baksmali
	Apktool

	Decompiler
	JD-Core
	JAD
	Android Decompiler

	Analyzing Reversed Source Code
	Obfuscation
	How it Works
	Summary Obfuscation Techniques

	Obfuscation Tools
	ProGuard
	DashO
	Decompiled Obfuscated Source Code

	Used Decompiler in DAMN
	Limitations
	Analysis Methods
	Static Analysis
	Dynamic Analysis


	Concept
	State of the Art
	Goals
	Scope of DAMN
	Use Cases
	Security Researcher
	Software Development Company
	Malicious Attacks

	Summary

	Tooling
	SuperSU
	Installation
	Installation Process in Detail
	Usage

	Dynamic Manipulation
	Cydia Substrate
	Xposed Framework

	Xposed
	XC_MethodHook Class

	Jadx
	Civetweb
	WSS


	DAMN
	Overview
	Architecture
	Application Layer
	Runtime Layer
	Native Library Layer

	Interaction Structure
	File
	IPC
	WSS
	Communication Trace

	DAMN User Interface
	DAMN Application Activities
	DAMN Browser Pages
	Start Page
	Tracking Page

	Configuration File
	Flow of Loading a Tracked Application
	DAMN Server Process
	Communication
	Document Directory

	DAMN Xposed Module
	Hook Process
	Control Flow Architecture

	DAMN Runtime States
	Run
	Pause
	Step
	States of Investigated Application
	Obfuscated Applications

	Manipulate the Application
	Manipulation of Parameters
	Manipulation of Return Value
	Manipulatable Classes

	Behavior Rules
	Structure
	Triggers
	Actions
	Chaining Triggers or Actions
	Current State

	Web Socket Data Exchange Protocol
	Protocol Structure
	Protocol Codes for Start Page
	Protocol Codes for Tracking Page

	Summary

	Investigating Real World Applications
	Test Environment
	Hardware
	Software Used on Device
	Software Used on Computer
	Used Tools

	Setup
	Simple System Application
	Third Party Applications
	Quiz Application A
	Investigate Quiz A
	Quiz Application B

	Recap

	Future Work
	Behavior Rules
	USB Tethering
	Multi Threading
	Stability
	Outlook

	Conclusion
	Content of CD-ROM
	PDF-Files
	Others-Files
	Image-Files
	Implementation-Files

	List of terms
	References
	Literature
	Online sources


