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ABSTRACT

Biometrics have become important for authentication on
mobile devices, e.g. to unlock devices before using them.
One way to protect biometric information stored on mobile
devices from disclosure is using embedded smart cards (SCs)
with biometric match-on-card (MOC) approaches. Com-
putational restrictions of SCs thereby also limit biometric
matching procedures. We present a mobile MOC approach
that uses offline training to obtain authentication models
with a simplistic internal representation in the final trained
state, whereat we adapt features and model representation
to enable their usage on SCs. The obtained model is used
within SCs on mobile devices without requiring retraining
when enrolling individual users. We apply our approach to
acceleration based mobile gait authentication, using a 16
bit integer range Java Card, and evaluate authentication
performance and computation time on the SC using a pub-
licly available dataset. Results indicate that our approach is
feasible with an equal error rate of ~12% and a computation
time below 2s on the SC, including data transmissions and
computations. To the best of our knowledge, this thereby
represents the first practically feasible approach towards
acceleration based gait match-on-card authentication.
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Biometric authentication, such as fingerprint, gait, or voice
authentication [29] becomes increasingly available and pop-
ular on mobile devices as device unlocking mechanism. In
contrast to classic, knowledge based mobile authentication
approaches like PIN, password, or graphical pattern [59], user
biometrics cannot easily be changed by users in case of them
being disclosed. Consequently, leakage or theft of biometric
information has severe consequences: attackers could e.g. re-
construct original biometrics from obtained information and
use it for replay attacks [8]. Usage of reconstructed biomet-
rics beyond the associated mobile device might be possible
too, as they are self-evidently the same across all system
they are used with (cf. [27,43,47,58]). Further, in contrast
to desktop computers, mobile devices are more easily lost,
stolen, or accessed by attackers without being noticed. This
further increases the risk of biometric information stored and
processed on mobile devices to fall into hands of attackers.

Consequently, biometrics processed and stored on mobile
devices need to be protected adequately. One approach
to doing so is using smart cards (SC) [49], which become
increasingly available in off the shelf mobile devices as so-
called secure elements (SEs). These SEs start getting shipped
with modern NFC hardware, and can either be directly
embedded in the phone hardware, extended with an SD
card, or provided within modern SIM cards [22]. Biometric
authentication with SCs can be done as either template
on card (TOC) or match on card (MOC) [3,7, 10, 28, 29].
With TOC, biometric templates of the user are recorded by
sensors of the mobile device and stored on the smart card
during enrollment. During authentication, new biometrics
are recorded, then the enrolled templates are fetched from
the SC and compared with the new readings outside the
SC. In contrast, with MOC authentication, new readings are
instead transfered to the SC, where they are compared with
previously stored templates directly on the SC.

This leads to the following noticeable differences of MOC
over TOC: one the one hand, after a user’s biometric tem-
plates have been stored on the SC during enrollment, they
never leave the SC. Hence, MOC reduces the possibilities
for leakage or theft of biometric templates over TOC. On
the other hand, comparing users’ biometric templates with
new biometric readings on the SC is subject to hardware
limitations of the SC, namely transfer bandwidth to and
computational limitations on the SC. Hence, the portion of
data that can be transfered to the SC and the computations
that can be done on the SC have to be selected carefully.



As reducing the risk of leakage or theft of biometric tem-
plates is important, MOC is regularly preferred over TOC,
despite the accompanying computational limitations. In turn,
those lead to restrictions in how existing MOC approaches
are frequently designed [3,9, 19,28, 29, 46]:

e MOC approaches usually rely on restricted operations
and logic for matching templates with new readings,
often not utilizing e.g. regular, offline trained machine
learning (ML) models. Further, they are frequently
restricted to a small set of — sometimes handpicked —
features to be used in the matching process. Both
necessarily limit the MOC discriminative power.

e To reduce computational requirements, most MOC op-
erations are very domain specific, as the underlying
mechanisms have been strongly adapted to the used bio-
metrics. This impedes the adaption of new biometrics
in MOC approaches — which would benefit from having
reusable concepts available for e.g. feature derivation,
model representation, and matching operations.

To address those restrictions, we aim for enabling a more
generic usage of simple ML models on SCs, which are com-
puted offline with sufficient computational power and don’t
need to be retrained during enrollment of individual users.
The challenge therein lies with the mentioned limitations,
which imply restrictions in how biometric features and ML
models can be calculated and represented for usage on SCs.

We therefore propose to train and generate ML models
offline (e.g. using server infrastructure), then to use the sim-
plified internal structure the trained models on SCs in the
matching process (Fig. 1). Models suitable for this approach
are those where the internal structure translates to a simple
representation in the final and fully trained state (e.g. an
equation). In contrast to matching on the SC, the offline
training, evaluation and selection necessary to obtain this
structure in the first place can be arbitrarily complex. After
obtaining such a model offline, both features and models
need to be adapted to suit SC restrictions. This comprises
data types of features and models, as well as computations
on those (e.g. by being restricted to integer space). Note
that it is desirable to integrate necessary adaption to fea-
tures and models already in the offline modeling process.
Doing so allows for more precise estimation of authentication
performance, which is in turn important for model tuning
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Figure 1: Conceptual overview of the proposed approach.
The SC is highlighted in green.

and selecting a reasonable model and model configuration
for usage on SCs. Consequently, both offline and on-device
processing rely on identical preprocessing and feature deriva-
tion. Further, note that feature derivation up to feature
simplification can be performed outside the SC. This allows
for more complex and powerful feature derivation over what
would be possible on the SC — while not compromising any
information previously stored on the SC.

In this paper we demonstrate the proposed approach on
mobile, acceleration based gait as biometrics on a SC re-
stricted to 16 bit range integer calculations. We restrict both
features derived from gait recordings and model structure
used on the SC to 8 bit integer values. This allows to com-
pute multiplications of such within a 16 bit integer range.
The goal we thereby pursue is to demonstrate that using
the obtained model, stored biometric template, and new
biometric reading in 8 bit representation, adequate authenti-
cation on the SC as MOC is still feasible. Summarizing, our
contributions are:

e We present a generic approach towards biometric MOC
authentication, using offline trained ML models and
adaption of models and features to enable their com-
putation and handling on SCs.

e We apply our approach to acceleration based gait au-
thentication, as example of biometrics with usually
complex matching and bigger templates than e.g. fin-
gerprints, and — to the best of our knowledge — thereby
present the first practical approach to gait MOC au-
thentication with acceleration data.

e We evaluate the performance and feasibility of our
approach in an acceleration gait authentication scenario
using a publicly available gait data set and a Java Card
SC with 16 bit integer calculation range. We thereby
find it to be feasible with ~12% EER and below 2s of
authentication time!.

2. RELATED WORK

To this date, fingerprints are the best researched biometrics
with match-on-card authentication approaches. They usually
feature small templates, thereby a small amount of features
(mostly minutiae based), which in turn leads to relatively
simple matching procedures [3,18, 20, 46].

Biometrics other than fingerprints for match-on-card au-
thentication has been covered by little research, with some
of it addressing e.g. the issue of face authentication usually
utilizing bigger templates than fingerprint authentication.
Tistarelli et al. [57] propose a face authentication TOC ap-
proach, in which they use morphological filtering and adap-
tive template matching to extract the position of relevant
facial features as features for matching. During matching
they fetch enrolled templates from the card and compare
them to new readings using a space-variant approach based
on principal component analysis (PCA). Kittler etal. [30]
state that PCA compresses templates in a suboptimal way
for usage on SC. They therefore propose a MOC approach

"When utilizing a non-restricted, non-MOC approach instead
(including dynamic time warping as model) on the same eval-
uation data, 18% EER have been obtained with comparing
single samples [41] and 94% TNR and 64% TPR when using
4 samples in comparisons [42].



using a 1D, client specific linear discriminant analysis (LDA),
of which they utilize the distance of new readings to both
the stored client template and to the average impostor to
derive a scalar distance measure. As tradeoff between com-
putational requirements and authentication performance,
Bourlai etal. [4] utilize the client specific LDA proposed
in [30] as feature derivation mechanism, then use the vector
dot product of new reading and enrolled template with a
predefined threshold to obtain an authentication decision.
Finally, Lee and Bun [33] combine PCA projection weights,
average intensity and edge values as features with genetic
algorithms (GA) for feature selection. They thereby largely
reduce the amount of features, which enables the usage of
an SVM model for authentication.

Further examples of biometric match-on-card authentica-
tion include speaker verification and iris recognition. For
example, Choi et al. [9] use support vector machines (SVM)
with a limited amount of features and FPGAs for speaker
verification in a match-on-card manner. Czajka etal. [10]
perform iris recognition by deriving a 1024 bit iris code from
samples outside the SC, then match new readings with en-
rolled templates on the card using a computationally simple
Hamming distance. This approach therefore is more simi-
lar to fingerprint than e.g. face authentication in terms of
template size. Another, still related example is human iden-
tification from CCTYV records [38]. Although the approach is
conceptually similar to gait authentication from visual data
(including the matching based on simple distance metrics),
the processing chain, including used features such as cloth
color and human height, represent a major difference.

3. BACKGROUND
3.1 Smart Cards

Smart cards (SC) such as secure elements (SE) used in
mobile devices, are special integrated circuits which provide
certain characteristics that are useful for security sensitive
applications: (i) Cryptographic operations (e.g. encryption,
decryption, hashing) can be performed directly on the chip,
often in hardware. (ii) SC are intentionally kept small and
less complex to make unintended behavior/bugs in the system
less likely. That is, it is easier to verify that there are no
major security flaws. (iii) Data and application code on
the memory is protected against unauthorized access and
tampering. A serial interface, which is controlled by the
operating system of the hardware, is the only way to access
this data.

However, besides those advantageous characteristics, SC
also bring limitations that need to be considered for appli-
cations relying on them: (i) data transfer to/from SC with
a restricted maximum bandwidth (cf. Holzl et al. [22] with
measurements of 329 B/s for contactless and 3,31kB/s for
contact cards). (ii) While some modern SC already use a
32 bit architecture, many currently deployed cards are still
based on a 16 bit architectures. That is, there are no 4
byte integers and integer calculations on those cards. (iii)
Persistent and volatile memory are highly limited with a
maximum capacity of around one megabyte for current cards.
(iv) Finally, SCs are limited in computation capabilities: for
example, there are no native floating point operations in
hardware available, and computations performed in software
are considerably slower than on PCs or mobile devices (clock
rate of SCs usually is in the MHz range).

These limitations in computation and data transfer directly
affect the internal structure of authentication models that
can be used on the SC as well as the number and type of
features transmitted. For example, using 4 byte integers in
a 16 bit environment requires more complex data structures
for the computations internally (i.e. operations on arrays for
simple multiplications). Hence, using small value ranges for
both model representation and features transferred to the
SC are preferred. Further, transmission bandwidth to/from
the SE is limited, which too limits the amount of data that
can be sent to the SE on authentication. In this paper, we
consider all these limitations in the design of the biometric
matching algorithm. We show that it is feasible to overcome
the disadvantages of SCs and make use of their advantageous
characteristics in a rather generic way.

3.2 Gait Identification and Authentication

Gait identification and authentication are the processes
of identifying and recognizing individuals by their distinc-
tive walking style [32]. Thereby, identification deals with
recognizing an individual from a set of individuals using
gait data, while authentication deals with determining if two
gait recordings have been originated by the same individual.
Both identification and authentication can be based on dif-
ferent types of data, including visually sensed information
(e.g. humans recorded in context of CCTV surveillance [52]),
floor sensed information (sensors being embedded with floors
humans walk on, such as pressure sensors [37]), and informa-
tion from sensors worn by humans themselves [16]. With the
latter, different sensor types and sensor positions on the hu-
man body have been utilized [15]. Besides dedicated sensors,
also modern mobile devices like smartphones have become a
powerful source of such data. They usually feature a number
of different sensors, and are frequently with people while they
are walking (e.g. inside a trousers pocket). Especially ac-
celerometers shipped with mobile phones have been used for
acceleration based gait identification and authentication [56].

Most gait identification and authentication approaches
utilize a toolchain comprising data recording, preprocessing,
segmentation, cleaning, feature extraction, and a matching
procedure. As human walking is of cyclic nature, each step (or
pair of left-right or right-left steps) can be seen as repetitive
cycle. For preprocessing, both step-cycle based approaches
(“cycle based”) and window based approaches have been
utilized in literature [21]. With cycle based approaches,
individual step cycles are segmented from recordings and
used for subsequent recognition. Analogously, with window
based approaches, a (possibly fixed length) sliding window is
used on recordings to segment data chunks, which are again
used for subsequent recognition.

The matching procedure of acceleration gait identification
and authentication often involves dynamic time warping
(DTW) as distance metric between two time series [34,41,62].
For two time series of length m and n, regular DTW brings
a memory complexity of at minimum m - n, which renders it
unfeasible for usage on regular SCs. Though there exist some
effective approaches to reduce the computational complexity
of DTW (thereby also restricting its warping power), such
as the Sakaboi-Chiba band [45,51], even most limited DTW
approaches are still difficult to calculate on SCs.

For acceleration based gait identification and authentica-
tion without using SCs and DTW, a number of features have
been used. Those include: average, median, min, max, stan-



dard deviation (SD), and median absolute deviation (MAD)
acceleration of individual axes and their magnitude [32,44],
root mean square (RMS) acceleration [44], mean- and zero-
crossings [44], principal component coefficients of accelera-
tion [5,55], binned acceleration distribution [16,32,44], time
between peaks [32], discrete cosine and fast Fourier transfor-
mation coeflicients [1,14,23,50], and Mel- and Bark-frequency
cepstral coeflicients [21,44]. Further, wavelet transforma-
tions have been used with non-cycle-based acceleration gait
data [21,48] and floor sensor based gait data [39], as well on
acceleration gait style recognition [25], which in contrast to
gait identification or authentication does not distinguish indi-
viduals but gait styles. On those features, again a number of
non-DTW based models have been applied, including cross-
correlation based [35] or tree based models [32], artificial neu-
ral networks (ANN) [32,54], support vector machines [44,55],
analysis of variance (ANOVA) [1], Gaussian mixture models
(GMM) [23], and hidden Markov models (HMM) [44].

With the majority of those approaches, neither training the
model, nor using a ready trained model to predict new sam-
ples is feasible on SCs for their computational requirements.
This is why we compute and simplify a model offline with
sufficient computational capabilities — then use its simplified
structure on SCs to predict new samples.

4. THREAT MODEL

It is well known that strong biometrics used in authen-
tication (face, fingerprint, iris, etc.), need to be protected
adequately from disclosure or theft. Obtaining a single bio-
metric template might be a sufficient basis for attackers to
perform e.g. replay attacks and fool authentication mecha-
nisms. In contrast, soft/weak biometric templates — such as
from behavioral biometrics — do not represent such a reliable
basis for attackers, as they can usually not be used for replay
attacks directly. Attackers need to fake the input for the
corresponding authentication method: for example, with
acceleration based gait authentication, they would need to
artificially reproduce acceleration sensed by device (e.g. by
walking like the legitimate subject or using a machine that
accelerates the device according to template). The increased
effort decreases the probability that such attacks are actually
performed successfully, but does not eliminate it — which is
why both hard and soft biometrics should be protected alike.

There are two main attack vectors for obtaining biometric
information from mobile devices: attackers obtaining physical
control over a device at a certain point in time, and attackers
having malicious software/trojans run on the mobile device
for a certain duration. Assume attackers obtain physical
access to a user’s mobile device (thereby access to data stored
on it) after the user has enrolled. If no SC is used to store
biometrics, attackers could simply extract stored templates
even if the device comes under attackers’ control long after
enrollment or the last authentication of the legitimate user.
If a TOC approach is used attackers are required to trigger
an authentication attempt for templates to be fetched from
the SC. This further requires attackers to monitor device
the memory /processor to obtain biometric information — but
still works without interaction of the legitimate user.

If a MOC approach is used, attackers cannot directly ex-
tract stored biometric information as it on purpose never
leaves the SC. Therefore, biometrics can only be obtained
while they are processed on the device outside the SC (from
sensors up to the SC) — either during enrollment or authen-

tication of the legitimate user. This implies attackers at
first need to access and manipulate a user’s device unno-
ticed, then need to wait until the legitimate users enrolls or
authenticates to obtain biometric information (they cannot
freely choose timing anymore). Such attacks likely require
attackers to run malicious software on the mobile device,
which leads to the second main attack vector.

Attackers having online access/live eavesdropping capabil-
ities on the user’s mobile device (e.g. using malicious soft-
ware/trojans) could monitor sensors and memory to obtain
biometric information directly when it is processed. Protec-
tion against such attacks requires securing/hardening the
whole processing chain from sensors up to the matching pro-
cedure and authentication decision. Approaches doing so
in an all-in-one piece of hardware are referred to as system
on card (SOC) and usually involve proprietary components
(cf. fingerprint authentication in current iPhone devices) —
which makes analyzing their properties and level of security
difficult. Another approach would be to combine a SC with a
trusted execution environment (TEE, e.g. ARM TrustZone?)
that protects information from sensors up to the SC.

The long-term goal for mobile biometric authentication
needs to be securing biometrics from sensors up to the au-
thentication decision in a transparent and well evaluated
approach — for which this work represents first step. For the
first time, it combines a MOC approach, generic matching
concepts, and biometrics with traditionally bigger, therefore
more challenging templates (such as gait cycles compared
to e.g. fingerprints). This is why we declare malicious soft-
ware/trojan attack vectors on the sensor data processing
pipeline out of scope for this paper. Further attacks on the
security of SCs themselves, such as side-channel attacks by
Kocher etal. [31] or Vermoen et al. [60], which try to extract
the biometric template from the SC itself, are also defined
out of scope.

5. METHOD

We utilize cycle based gait authentication based on ac-
celeration data recorded by off-the-shelf mobile devices. In
contrast to previous research we use a match-on-card ap-
proach that combines a non-DTW based model and features
previously used in acceleration gait recognition with features
from other domains. Our approach is divided into two major
parts: offline model generation and usage of this model for
enrollment/authentication on the mobile device (Fig. 2).

Offline model computation and enrollment/authentication
on mobile devices use the same steps for preprocessing. Those
include: detection of users walking, segmentation of steps,
normalization and cleaning of extracted steps. Feature deriva-
tion, without feature selection and simplification, is identical
for offline computation and mobile devices as well. The
remaining steps differ slightly. Based on preprocessed step
samples, offline computation first trains and evaluates a
model, then performs model simplification and feature fil-
tering, and finally estimates the resulting authentication
performance. The obtained model is stored on SCs of mobile
devices intended for authentication and does not need to be
retrained during enrollment of individual users.

In contrast, enrollment and authentication on mobile de-
vices use feature selection parameters obtained from previous

*http://www.arm.com /products,/processors/technologies /
trustzone/
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Figure 2: Overview of our approach on gait authentication
with offline model computation and simplification, and on-
device enrollment and authentication in MOC manner. The
SC is highlighted in green.

offline computation, and thereafter simplify remaining fea-
tures. Additionally, in enrollment, features of preprocessed
step samples are used as biometric templates of the user
and stored on the SC. In authentication, features of the
new recordings are transfered to the SC, where they are
used together with previously stored samples of the enrolled
template and the offline-trained model to obtain an authen-
tication decision.

5.1 Offline Model Creation

5.1.1 Gait Data Preprocessing

Preprocessing mechanisms are adapted from Nickel [44]
as well as Muaaz and Mayrhofer [40,42], which comprise of
walking detection and preprocessing, as well as subsequent
step detection and preprocessing, which be briefly summarize
here.

From 3D acceleration recordings, we extract walking seg-
ments with y-axis acceleration variance above 0.8 73 for at
least 10s. Per segment, to compensate for gravity, we remove
the mean acceleration per axis, then compute the resulting
acceleration magnitude. As acceleration sampling is not nec-
essarily uniform, we further perform a linear interpolation to
obtain a uniform sampling rate of 100 Hz. For noise reduction
we apply a Savitzky-Golay filter [53] with window length 15
and polynomial of 1st order. The core advantage of this filter
over frequently used running mean or median filters is the
better retaining of the original signal shape.

For step cycle segmentation, reference cycles are extracted
from each walking segment, around the middle of the seg-
ment. Those are used to determine previous and succes-
sive starts of cycles in the same walking segment, which in
turn are segmented into individual gait cycle samples of the
corresponding individual. Furthermore, those are linearly
interpolated to a uniform length of 100 acceleration values
each, which with 100 Hz sampling rate corresponds to a du-
ration 1s. Cycles that diverge largely from the majority of
extracted cycles are further defined as outliers and discarded.
For that purpose we compute the normalized dynamic time
warping (DTW) distance® between all n cycles and discard
those for which > & distances are above a predefined thresh-

3The DTW distance calculation is done for preprocessing
purposes and outside the SC, consequently is not related to
the model utilized for gait authentication on the SC.

old of 0.6. The remaining gait cycles are used in feature
derivation and subsequently handed to the SC for enrollment
or authentication (Fig. 3).
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Figure 3: Examples of preprocessed gait cycles with a uniform
length of 1s, consisting of 100 values each.

5.1.2  Step Cycle Feature Derivation

For each preprocessed cycle we derive a number of time and
frequency domain features, as well as a wavelet transformed
representation. For time domain features we utilize the
mean, median, standard deviation (SD), median absolute
deviation (MAD), and autocorrelation (AC) series with a
maximum shift of 100 values as features. AC has been used
as signal preprocessing in other biometric recognition tasks,
such as electrocardiography (ECG) recognition [2], but to our
knowledge not yet in acceleration based gait authentication.
To reduce naturally existing inter-feature correlation of the
resulting AC feature vector, we use only each third value as
feature, which with a sampling rate of 100 Hz corresponds to
a shift granularity of 30 ms. For frequency domain features we
compute the fast Fourier transformation (FFT) of the cycle.
As human body motion sensed by accelerometers usually yield
usable information in the frequency range of about 0-20 Hz [6,
13,63], we use both frequency power and phase in this range
as features. Frequency power and phase are added as separate
features to a) avoid handing complex values to models and
b) enable separately treating them (e.g. normalizing and
discarding features individually). For wavelet representation
of steps, we perform a discrete wavelet transform (DWT)
using a multiresolution analysis of 6 levels. As wavelet we
utilize a least asymmetric Daubechies wavelet [11] of length
8. As with FFT features, all wavelet features are treated as
individual features too.

By combining mean, median, SD, MAD, AC, FFT and
wavelet features we obtain a feature vector of length 177 for
each gait cycle. We later only use a subset of those features in
our generated model. However, as the used feature selection
relies on at first using all features in offline model training,
we describe feature simplification and offline model training
before focusing on creating the feature subset in Sec. 5.1.6.

5.1.3  Feature Simplification

The derived features are real numbers, hence need to be
transformed (scaled, shifted, and rounded) to a representa-
tion fitting an 8 bit integer range. This is done by computing
the mean and SD per feature over all data available in the
offline training data. For feature simplification, a transfor-
mation is applied to each feature f (Eq. 1), with resulting
features being bigger or smaller than the boundaries of the
8 bit space being capped (Eq. 2). This ensures that the 8
bit space can be optimally used for the mainstream data,
while boundaries are respected also for new, unseen data



with potential outliers. The resulting feature vector therefore
consists of simplified features fs in the range [0,255].

a = round (%W 127+ 127) (1)
255 a> 255
fs=1<a 0<a<255 (2)
0 a<0

On the mobile device, the same feature preprocessing and
simplification transformation is applied to features of new
recordings during enrollment and authentication. The mean
and SD per feature, computed from offline training data, are

stored on the mobile device outside the SC for this purpose?.

Simplified features of biometric readings are handed to the
SC for enrollment or authentication purposes then. We refer
to those feature vectors as biometric feature vectors.

5.1.4 Model Training

Offline model training uses pairs of samples represented
by their feature vectors. At first, the distance between two
biometric feature vectors v; and vz yields a 8 bit feature
distance vector d with the same, fixed length (Eq. 3).

d=|v1 — v 3)

We refer to feature distance vectors originated by the same
person as being a sample of the positive class P (a "positive
sample”), and to those originated by different people as

being a sample of the negative class N (a "negative sample”).

Using feature distance vectors of P and N samples from our
offline training data we create a classification model able to
distinguish between those (see Sec. 6 for details on how data
partitioning was done with training data). The obtained
model can then be used on the mobile device to decide if a
new feature distance vector is a P or N sample.

As classification model type we use a generalized linear
model [12]. In their internal, ready trained state, such models
are represented by coefficients (the slope S) and an additional

intercept I (the offset to the origin of the coordinate system).

They predict a sample’s class membership C), using a linear
combination of the sample’s distance vector with slope and
intercept, then use a predefined threshold to decide on the
class (Eq. 4).

P Zd151>1

C, =
P N Ydi-8:<1I

(4)

Such linear combinations are simple enough to be computed

on a SC, which is a core reason for choosing this model type.

From training we obtain the optimal slope, intercept, and
threshold — which are later used to predict the class of new
samples in both an offline evaluation of our approach as well
as the application case of on-device authentication.

5.1.5 Model Simplification

The slope S and intercept I obtained from model training
are real numbers, and, similar to biometric features, have to
be transformed to an 8 bit representation for usage on the
SC. We therefore scale model coefficients to optimally fit an

4As with subsequent feature selection only 75 features remain,
the mean and SD for normalizing features is only stored for
those features on the device.

8 bit range of [—128,127], apply a cap at boundaries, and
transform the intercept accordingly (Eq. 5 and. 6).

S
b = round (m . 127) (5)
—128 b< —128
S, =<b —128 < b < 127 (6)
127 b> 127

In contrast to transforming biometric features, no shift is
applied. This would otherwise change the meaning of coeffi-
cients (coeflicients around 0 have less influence on the result
than those with higher absolute values). Having both feature
distance vectors and the slope in 8 bit integer representation
allows for piecewise multiplication in 16 bit integer range.
This can therefore be done efficiently on SCs that only sup-
port integer calculations with 16 bit integers in hardware.
To keep the linear combination of all products within a range
of 16 bit (especially during summing intermediate, piecewise
products of slope and difference vector), we utilize the mean
value instead of a sum. Hence each intermediate product is
divided by the length of the slope vector (Eq. 7 and 8).
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Besides allowing for linear combination in 16 bit range, this
representation of the model has the advantage of requiring
only n + 2 bytes of storage memory with using n features (n
bytes for the slope and 2 bytes for the intercept).

5.1.6 Feature Selection

After model training, we utilize a feature selection mecha-
nism using the coefficients obtained from linear model train-
ing. Features which are associated to small coefficients nec-
essarily have small influence on the output variable, hence
can possibly be removed without severely reducing classifi-
cation performance. The core advantage of doing so is that
using less features causes less computations on the SE; which
therefore speeds up processing. Another, smaller advantage
is that relying on stronger features could slightly increase
overall predictive power of the model. However, as small
coefficients don’t necessarily denote features unimportant for
separating classes, prediction capabilities might as well be
slightly reduced by doing so. In preliminary tests we were
able to exclude features of which the corresponding coeffi-
cients were 25% or smaller than the strongest coefficient,
without severely deteriorating the resulting distinguishability
of the model. This leads to 76 of the original 177 features
remaining in our model (Fig. 4).

40 80 120

Absolute slope

0

Figure 4: Ordered feature importance of all original 177
features, denoted by the absolute of the associated slope
from the linear model. The red line denotes the border of
discarding features with small slope.



Based on those features, we subsequently exclude features
with correlation > 0.8 to any other feature, to further reduce
inter-correlation of features. As inter-feature correlation
already is small before doing so (Fig. 5), only the MAD
feature is excluded with this step. Consequently, both the
final slope and biometric feature vector utilized in the model
are of length 75, which leads to a required storage memory
of 75 4+ 2 = 77 bytes for the model and 75 bytes per stored
biometric template of the user.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Figure 5: Inter-feature correlation of resulting features: the
correlation is already small due to previous selection mecha-
nisms, leading to only the MAD feature being excluded with
a correlation threshold of 0.8.

5.2 Mobile Device: Enrollment and Authenti-
cation

Preparation of mobile devices comprises storing the fea-
ture normalization and simplification parameters as well as
the model itself (slope and intercept) on the SC. For data
recording on mobile devices we utilize step sensors (pedome-
ters) and accelerometers. Pedometers are an integral part of
many modern mobile devices already: they allow for moni-
toring device acceleration without constantly draining the
battery. We use pedometers to notify the main CPU and
start recording of gait data using 3D acceleration sensors
if steps are detected. After data recording, enrollment and
authentication use the same approach as offline model cre-
ation towards data preprocessing, feature derivation, and
feature simplification (Sec. 5.1). Note that on mobile devices
those can be done outside the SC, as they don’t use any
information about templates stored previously on the SC,
and therefore don’t require any calculations on the SC.

For enrollment, m feature vectors of m newly recorded
gait cycles are handed to the SC, where they are stored in
the enrolled template for later usage. No further calculations

are done on the SC. For authentication, n feature vectors of
n newly recorded gait cycles are again handed to the SC. As
this transmission is done for each authentication attempt, the
transfer period is important and measured in our evaluation
later. On the SC we perform m - n comparisons between all
m stored reference cycles and all n newly transmitted cycles
using the stored, offline-computed model. The resulting
m - n predictions (each P or N) are treated as votes, and
thereby yield a final, binary authentication decision — which
is handed from the SC to the mobile device to authorize or
deny an authentication attempt. If we would instead hand an
authentication probability from the SC to the mobile device,
this would conceptually allow for more flexible feedback to
users. The downside of doing so is the danger of enabling hill
climbing attacks to unlock the system or derive information
about users’ biometrics [17,36,58,61] — which is why the SC
only yields binary authentication decisions.

6. EVALUATION
6.1 Dataset and Data Partitioning

For evaluation of our approach we use the gait data set of
Muaaz and Mayrhofer [42] which contains 3D acceleration
recordings of 35 people, each walking about 550 m in total.
The data was recorded with off-the-shelf smartphones fea-
turing 100 Hz 3D accelerometers, with phones being placed
realistically in trousers pockets. Further, for each partici-
pant, recording was split into two sessions with a gap of on
average 25 days between recording, which allows for realistic
cross-day evaluations of gait authentication systems. From
this data we utilize cross-day, left-pocket recordings of all
participants. We train and evaluate our approach with subset
of this data.

To obtain a realistic estimate of the authentication per-
formance on people unseen by the model during training,
we perform a 50/50 population independent split on the
dataset [26]. We thereby assign 50% of participants to the
training partition, which is used for training the model, and
50% of participants to the test partition, which is only used
once for estimating the performance of the evaluated, chosen,
and trained final model on yet unseen people. We apply
feature derivation and simplification to the training partition
as stated in Sec. 5, then use determined feature simplification
parameters to apply the same to the test partition — as it
would be done on mobile devices. Due to slightly different
amounts of gait cycles being discarded per participant during
preprocessing and data cleaning, this results in a total of
2132 and 1943 unique gait cycles in the training and test
partition, respectively. For both training and test partition,
we use all combinations of different gait cycles originated
by the same person to obtain P samples, and all combina-
tions of gait cycles originated by different people (within
the corresponding partition) to obtain N samples. We fur-
ther use all combinations of gait cycles between training and
test partition (which are necessarily originated by different
people) as additional, population dependent test partition.
Due to the size of the training partition and the resulting
training complexity, we use a random subset of 100000 P
and 150000 N samples for training the model. However, for
intra-training evaluation of trained models, the full training
partition size is utilized nevertheless (Tab. 1).

6.2 Model Evaluation



Partition Cycles P N
Training 2132 174410 2207243
Test, pop. independent 1943 168976 2158427
Test, pop. dependent - 0 6918157

Table 1: Size of the training, population independent, and
population dependent partitions, as amount of gait cycles
and the resulting amount of P and N samples.

P and N samples from the subset training partition are
used to train and evaluate different parametrizations of our
model to find a suitable configuration for distinguishing
between P and N samples. As training and evaluation proce-
dure we thereby use well established 10-fold cross validation
with 10 repetitions and measure the authentication perfor-
mance as receiver operating characteristics (ROC) curve,
area under the ROC curve (AUC), and equal error rate
(EER). After an optimal configuration has been found, the
final model is trained with it using all training data. It is
then evaluated by separately applying it once on the popula-
tion independent and population dependent test partitions
to obtain a realistic authentication performance estimate on
data of yet unseen people. For this we report the resulting
true positive rate (TPR) and true negative rate (TNR). For
comparability we additionally also report the ROC curve,
AUC, and EER, when using all determined parametrization
except the final decision threshold on the test partition.

The resulting model further serves as basis for voting when
using multiple gait cycles in both template stored on the SC
and new reading sensed for authentication. Thereby, m cycles
are contained in the enrolled template and n new readings
are provided during authentication — which results in a total
of m - n samples and votes. For tuning the voting approach
we use the same data partitioning, with the training partition
being used to evaluate the authentication performance of
different voting parameters (nr. of votes used in voting),
and the test partitions being used only for reporting a final
authentication performance estimate on the final, voting
based model.

For authentication based on a single comparison between
one cycle as enrolled template and one cycle as new reading,
we achieve an AUC of 0.900 and EER of 0.172 in our cross
validation evaluation. The authentication performance over
number of votes (Fig. 6) supports intuition, as increasing
the number of votes goes alongside an increased authen-
tication performance. As tradeoff between authentication
performance and computation time, we achieved a reason-
able AUC of 0.961 and EER of 0.079 with a total of 2° = 64
votes (e.g. using n = m = 8) and a voting threshold of
39.8% (P being predicted with at least 39.8% votes for P,
and N otherwise). We want to emphasize that, although the
increase in EER slows down with around 2% = 8 votes, the
overall authentication performance still rises further when
increasing the amount of votes (as reflected by the AUC).
We also observed this effect in our experiments when we
applied the held-back test set to a voting classifier using only
8 votes, which resulted in a noticeably worse false positive
rate (FPR) as compared to using 2° = 64 votes instead. An
intuitive explanation for this could be that a higher num-
ber of comparisons better reflects the allowed intra-person
variance in gait cycles, while a comparison of few samples
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Figure 6: Authentication performance as AUC and EER over
the total amount of votes, as result of comparing multiple
gait cycles from the enrolled template with multiple cycles
from the new reading during authentication.

Partition Votes AUC EER TPR TNR
Training 1 0.900 0.172 - —

Test, pop. indep. 1 0.863 0.211 0.770 0.804

Test, pop. dep. 1 - - - 0.793
Training 64 0.921 - - -

Test, pop. indep. 64 0.958 0.119 0.899 0.868

Test, pop. dep. 64 — — 0.896

Table 2: Evaluation results for using a single vote (single
gait cycle in both the template and the new reading), and
a total of 64 votes (e.g. 8 templates and 8 new readings to
compare to) for the training, population independent, and
population dependent test partition.

lacks this information. When applying the resulting models
to the population independent test set, we obtain a TPR of
0.770, TNR of 0.804, and intra-partition AUC of 0.863 and
intra-partition EER of 0.211 for using single samples — and
a TPR of 0.899, TNR of 0.868, intra-partition AUC of 0.958
and intra-partition EER of 0.119 for using 64 votes (Tab. 2
and Fig. 7).

6.3 Smart Card Computation Time

For evaluating the computation time of our approach on
SCs we use a 16 bit JCOP 2.4.1 smart card with 80 kB
EEPROM memory running Java Card version 2.2.2 and
communicate over the contactless interface. The round-
trip time of transferring a 75 byte gait cycle to the SC
card and yielding a 2 byte authentication decision back to
the mobile device was measured to be 6.6 ms on average.
This duration excludes computations on the SC and scales
linearly when sending multiple gait cycles instead (e.g. 8
cycles with an average of 52.8 ms). Similarly, the measured
mean computation time of our approach on SCs (Tab. 3 and
Fig. 8, both including transmission time) indicates a nearly
linear increase of computation time over number of used
gait cycle votes. Those include the calculation of distances
between transmitted gait cycles and cycles stored on the SC
in the enrolled template, the linear combination of distances
with model parameters determined offline, the voting of
individual results to obtain an authentication decision, and
the yielding thereof.

In absolute numbers, data transmission time becomes neg-
ligible compared to computation time on the SC. This implies
that changing the number of samples m in the enrolled tem-
plate and number of samples n in the new reading has little
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Figure 7: Receiver operating characteristics (ROC) curves
for using a single gait cycle in both the template and the
new reading, and a total of 64 votes (e.g. 8 templates and 8
new readings to compare to) for the training and population
independent test partition.

T. cycles 8 16 24 32 40 48 56 64
Mean [ms] 235 437 641 842 1047 1247 1451 1654
SD [ms] 2.83 3.42 3.48 3.54 3.98 390 4.14 3.97

Table 3: Mean and standard deviation (SD) of the compu-
tation time of our approach on the SC. The time includes
sending 1 sample from a new reading to the SC, computing
votes with all samples stored in the enrolled template (T.
cycles), and computing and yielding a 2 byte authentication
decision.

impact if the number of total votes m - n is unaffected. With
using 8 cycles in the enrolled template and 8 cycles in new
readings we achieve a computation time of at maximum
8 - 235ms = 1880 ms on average — which we argue to be
reasonable as gait authentication delay, as recording the cor-
responding gait data on the mobile necessarily takes longer.
Note that the computation time could be reduced further
by sending multiple cycles to the SC at the same time (i.e.
each single cycle sent to the SC requires initialization and
additional computations). However, the amount of data
that can be sent in one query is limited to 255 bytes by
the transmission protocol of the SC (cf. application protocol
data units (APDU) in [24]). While this limitation could
be overcome by using the extended version of the protocol
(extended length fields in [24]), we consider the short and
therefore slower variant for interoperability with all currently
deployed smarts cards in our measurements.

Therefore, our approach is able to yield a TPR of 0.899
and TNR of 0.868 with the associated MOC computations
staying below a total duration of 2s on most currently de-
ployed smart cards — which we argue to be a reasonable and
applicable tradeoff between authentication performance and
authentication delay.

7. CONCLUSIONS

In this paper we presented an approach towards match-
on-card authentication on mobile devices that uses models
created from offline machine learning. We use model types
that feature a simple internal representation once they are
fully trained. To enable their usage on SCs, we further adapt
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Figure 8: Visualization of Tab. 3, with error bars depicting
the doubled standard deviation.

and simplify both used features and models. The model is
computed only once using a database of the corresponding
biometrics — then stored on the SC of mobile devices intended
for authentication. Enrollment on mobile devices involves
recording samples of the authorized user and storing their
feature vectors on the SC, without requiring retraining the
model. Authentication compares features of newly recorded
samples with enrolled samples on the SC, using the previously
stored model to derive a binary authentication decision.

We applied our approach to acceleration based mobile
gait authentication using a Java Card with 16 bit integer
calculation range. Using a mobile acceleration gait dataset
we found our approach to require 77 bytes of storage on the
SC for the the offline computed model, and 75 bytes per gait
step cycle. With 8 cycles in the enrolled template this leads
to a total of 677 bytes of storage requirement on the SC.
When also using 8 newly recorded cycles for authentication,
leading to a total of 64 comparisons performed on the SC,
we found our approach to be feasible with a true positive
rate of 0.899 and true negative rate of 0.868. Authentication
time on the SC thereby stays below 2s, including data trans-
missions and authentication computation. To the best of
our knowledge, this work thereby represents the first practi-
cal approach towards acceleration based gait match-on-card
authentication. One advantage of the proposed approach is
that it can conceptually be applied on different biometrics
alike, thereby possibly facilitate the translation of match-
ing procedures of other biometrics to match-on-card. The
majority of changes would be in preprocessing and feature
derivation, while offline model computation as well as feature
and model simplification would likely be similar — which
could be investigated in future research.
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