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ABSTRACT
Gait authentication using a cell phone based accelerometer
sensor offers an unobtrusive, user-friendly, and a periodic
way of authenticating individuals to their smartphones. In
this paper, we present a GMM-UBM based gait recognition
approach for a realistic scenario (when the phone is placed
inside the trouser pocket and the user is walking) by using the
magnitude data of a smartphone-based tri-axes accelerometer
sensor. To evaluate our approach we use a gait data set of
35 participants collected at their respective normal walking
pace in two different sessions with an average gap of 25
days between the sessions. We obtained EERs of 3.031%,
11.531%, and 14.393% for the same-day, mix-days, and cross-
days, respectively.

CCS Concepts
•Human-centered computing→ Smartphones; •Security
and privacy → Biometrics;
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1. INTRODUCTION
Gait is defined as the way/style of walking, which is reg-

ulated by a complex biological process involving the brain,
spinal cord, nervous, and musculo-skeleton systems. Humans
walk bipedally, and any form of bipedal walking occurs as the
result of repeated movement of each foot from one foothold
to the next and the ground reaction forces experienced by
the feet to balance the body weight while walking. Therefore,
human gait is a cyclic process and the time interval between
two consecutive occurrences of any of the periodic events
of walking is called a gait cycle. Moreover, medical and
psychological studies have shown that human gait patterns
are unique. Over the past 30 years, researchers have explored
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gait as a biometric identifier to identify and verify individuals
from their walking styles.

Currently, there exist three different approaches to gait
recognition: video-based, floor sensors-based, and wearable
sensors-based. The wearable sensors-based approach has
drawn particular attention in this field of research with the
development of (microelectromechanical systems) MEMS
inertial sensors, especially their integration in smartphones.
Since 2009, gait recognition using smartphone-based inertial
sensors (accelerometers, gyroscopes) is being explored as
one of the alternatives to traditional PIN/password based
authentication systems. Previous studies on this subject
have shown promising results [1, 6, 8, 10].

The gait recognition task can be seen as a typical pat-
tern recognition problem and follows similar steps, such as
preprocessing, segmentation, feature extraction, and classifi-
cation. There exist two approaches to accelerometer based
gait recognition on the basis of segmentation process: the
cycle-based and frame-based [8]. In cycle-based approach,
data is segmented from the start of every gait cycle and
analysis is performed on these gait cycles [1, 3,6]. However,
the frame-base approach does not require gait cycle detection
in the inertial data, but the data is segmented into either
overlapping or non-overlapping segments (frames). Then
features are extracted from these frames and machine learn-
ing algorithms are applied [8] for the genuine and impostor
classification.

Over the past several years, adapted Gaussian Mixture
Model-Universal Background Model (GMM-UBM) have be-
come the state-of-the-art approach for speaker recognition
systems. In this paper, we demonstrate the use of adapted
GMM-UBM for cycle-based gait recognition. The outline
of this paper is the following. In section 2, we briefly ex-
plain our data collection process. Data description and its
processing steps are given in section 3. The GMM-UBM
based classification framework is described in section 5 and
finally, the experiment, results, and discussion are given in
section 5.1.

2. DATA COLLECTION
In this paper, we use the same gait data set used in [6]. The

data set comprises of gait data collected from 35 participants
including 6 females and 29 males, using a Google Nexus
Android phone. For data collection purpose, an Android
application was developed which records three-dimensional
(X, Y, and Z axis) accelerometer data at a sampling rate
of 100 Hz and writes it to a text file with time stamps.
Participants were instructed to wear trousers with not-too-



loose front pockets. For capturing a distinctive walking
style, the phone or sensor must be placed close to the body
otherwise it might pick up too much random noise. In
the data recording phase, the phone was placed inside the
trousers right side pocket. Participants were asked to walk at
their normal pace in a 68 meters long straight corridor (with
no stairs). They were told to wait for 1 second at the end
of the walk then turn around and wait for another second
before starting their new walk. In one session, every subject
walked 4× 68 = 272 meters or in other words completed two
rounds of the corridor. For every subject, data recording was
conducted in two different sessions. An average gap between
the sessions is about 25 days. Eight walks were recorded for
every subject in two different sessions.

3. DATA PROCESSING
Figure 1 shows various activities performed in a data

recording session. Approximately, the first 10-20 seconds of
data is when the phone was being placed inside the pocket,
and next 100 seconds are when the person is standing still
and listening to the instructions. Then the participant starts
walking and reaches the end point. This walking activity
lasts around 50 seconds and varies from person to person as it
highly depends on the walking pace of the participant. At the
end of the walk participant waits for a second, turns around
and waits for another second before the new walk, and so on
a participant completes the session with four walks. Data
processing begins by separating session-wise recorded walks
and computing magnitude from the tri-axes accelerometer
data.

3.1 Active Walk Segment Detection
Accelerometers are very sensitive to noise; even when a

smartphone is in a steady state, acceleration measured along
any axis is not stable over the time. For instance, when
the smartphone is in the stable state, the squared sum of
acceleration values of all three axes should be equal to the
earth gravitational force (9.81 m

s2
), but in practice this is

not the case. Therefore, in the first step, recorded walk
data is mean normalized. First, a mean acceleration value
is computed for every axis from the acceleration data along
that axis. Then from the acceleration data along every axis,
its respective mean value µ is subtracted Afterwards, the
process of extracting active walk segments begins. We define
active segments as those sections of the recorded data when
a user was walking. This is done by monitoring the variance
of the acceleration magnitude of the tri-axes accelerometer
in a sliding window, as stated in [5]. For our evaluation
and implementation, we use a sliding window of two seconds.
When the variance of acceleration magnitude rises above or
drops below a variance-threshold (0.8 m

s2
) this marks the start

and the end of an active walk segment as shown in Fig 1. A
grid search was performed on the recorded gait data to find
an appropriate value of variance threshold.

3.2 Interpolation
The accelerometer sensor on Android phones does not

output equidistant data. It only outputs data when Android
API’s onSensorChanged method is triggered. Therefore, the
time interval between two consecutive sensor values is not
equal. By applying interpolation, data can be reshaped in
equal intervals of time and can also be up-sampled in order
to avoid data loss of too many values, for this purpose, we
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Figure 1: Detecting active walk segments.

have used linear interpolation.

3.3 Noise Removal
A Savitzky-Golay smoothing filter (also called the digital

smoothing polynomial filter or least-square smoothing filter)
is used to filter noise from the data. We preferred a S-G filter
over the typical average moving filters because least-square
smoothing not only reduces noise but also maintains the
shape and height of waveform peaks. The basic idea behind
S-G filter is to find a least-square fit with a polynomial of
high degree for each data point, over an odd sized window
centered around that data point.

4. SEGMENTATION
Human gait exhibits a cyclic pattern, and therefore mea-

sured acceleration is also periodic. The first step in the gait
template generation process is to estimate the gait cycle
length.

4.1 Cycle Length Estimation
We begin by extracting a small subset of samples (for

reference, see Fig. 2) from the center of the walk as it is the
most stable section of the walk because few cycles in the
beginning and ending of the walk may not adequately present
the person’s gait [1,6]. Then we compare this reference subset
with the other subsets (of similar length) extracted from the
same walk by moving one sample forward, towards the end
of the walk as shown in Fig. 2. Selecting too few samples

Figure 2: Estimating the gait cycle length.

for the reference subset will not reflect periodicity in the
walk. Similarly, selecting too many samples for the reference
subset will reduce the number of comparisons. From our
experiments, we found that a reference window size equal
to the sampling frequency not only reflects periodicity in
the data, but also results in enough comparisons to estimate
the gait cycle length. Comparing the reference subset with



subsets extracted from the walk results in a distance vector
as shown in Fig. 3. From this vector we find the indices of
minima and store them in a minimum index vector. Later,
we compute a difference vector which contains the difference
of every two adjacent elements of the minimum index vector.
Finally, the cycle length is computed by taking the mode of
the difference vector. In those cases where mode does not
exist (which means every step has different length e.g. if an
individual is intentionally changing the walking pace) cycle
length is computed by averaging the values of the difference
vector.
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Figure 3: Estimating gait cycle length from detected
minima.

4.2 Cycle Detection
Gait cycle detection starts by extracting a small segment

(two times the estimated cycle length) from the center of
the walk. Then we detect local minima in this extracted
section of the walk. Sometimes interpolation errors could
affect this area of the walk and we might detect a wrong
minimum. To reduce this risk we use a segment size of double
the cycle length. By doing so, we aim to pick two minimum
values and we start cycle detection from the index of the
most prominent minimum. From the index of this minimum
point, cycle detection is done in a forward and backward
direction by adding and subtracting the cycle length. From
our experiments, we found that minima in the walk usually do
not occur at equal intervals of gait cycle length. Therefore,
we add and subtract a small offset value (0.2 times the
estimated cycle length) to the index of the newly found end
point and search for a local minimum in that region as shown
in Fig. 4. Once all minima in both directions are found, the
walk is segmented from the indices of these minima. Then all
detected gait cycles are normalized to an equal length of 100

Figure 4: Estimating the start of a gait cycle.

samples because the similarity measures such as Euclidean

distance only work on equal length data series.

4.3 Omitting Unusual Cycles
Detected cycles are cleaned by deleting unusual cycles.

These outliers may occur e.g. if a person has stumbled while
walking, stopped for moment to open the door, or quickly
turned. To remove outliers, pairwise distances are computed
between all detected cycles using DTW. This results in a
matrix Dn×n, where n is the number of detected cycles. If
A = (a1, a2, a3, ..., an) and B = (b1, b2, b3, ..., bn) are two gait
cycles thenDTW (A,A) = 0 andDTW (A,B) = DTW (B,A).
This means that we only need to compute lower or upper
triangular elements of the matrix D. Finally, those cycles
which have 50% of their pairwise distances greater than a
threshold (0.6) are removed. Remaining cycles as shown in
Fig. 5 represent the gait template of an individual. These gait
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Figure 5: Example of an extracted gait template.

cycles can be used for template based classification as used
in [6], but in this study, we extract following 88 features from
every gait cycle including 80 Discrete Cosine Transformation
(DCT) coefficients and spectral (roll-off, kurtosis, centroid,
skewness, slope, decrease, flatness, and spread).

5. CLASSIFICATION
We use a GMM-UBM verification framework, a state-of-

the-art approach for speaker verification [9]. A GMM-UBM
approach can be divided into three parts: off-line training of
a subject independent UBM via the Expectation Maximiza-
tion (EM) algorithm, subject specific gait model generation,
and likelihood ratio-based subject verification. A UBM is
a subject independent large universal background GMM
trained from gait data pooled from lots of subjects, intended
to represent how humans walk in general. This UBM-GMM
is a multivariate Gaussian distribution which is parameter-
ized as λubm(wi, µi,Σi), where wi is mixture weights (which

satisfy the constraint
∑M

i=1 wi = 1), µi and Σi are the mean
and covariance matrices of each mixture or each Gaussian
component. It is empirically observed that a diagonal co-
variance matrix out-performs a full covariance matrix [9],
therefore, in our approach we also use diagonal covariance
matrices. Further, to avoid over-fitting the training data, a
variance limiting threshold is applied. Given the collection of
training vectors, maximum likelihood model parameters are
estimated by using the EM algorithm. The EM algorithm
iteratively refines the GMM parameters to monotonically
increase the likelihood of the estimated model for the ob-
served features. The subject specific gait model is also a
GMM model but instead of using iterative (EM) algorithm
it is derived from the universal background model by using
the Maximum-a-Posteriori (MAP) adaptation. This provides



a tighter coupling between the UBM and subject models.
Further, it is less computationally intensive compared to the
EM algorithm. Given a background model and training vec-
tors from a user, we first determine the posterior probability
of each mixture as given in equation 1 and then compute
sufficient statistics for the weight, mean and variance as given
in equations 2, 3, and 4.

p(i | xt) =
wipi(xt)∑M

j=1 wjpj(xt)
; (1)

ni =

T∑
t=1

P (i | xt); (2)

Ei(x) =
1

ni

T∑
t=1

P (i | xt)xt; (3)

Ei(x
2) =

1

ni

T∑
t=1

P (i | xt)x2t . (4)

Finally, the parameters of the adapted subject specific model
(wi, µi,Σi) are updated as given in equations 5, 6, and 7.

w′i = [
αini

T
+ (1− αi)wi]γ; (5)

µ′i = αiEi(x) + (1− αi)µi; (6)

σi
2′ = αiEi(x

2) + (1− αi)(σ
2
i + µ2

i )− µ2
i . (7)

Here, γ is a scaling factor, used to ensure that the sum of
adapted mixture weights equates to unity and αi = ni

ni+r
,

where r is a relevance factor. Finally, features are extracted
from testing data and evaluated against the UBM and subject
specific GMMs and the decision is made by comparing the
log likelihood of the subject’s adapted gait model and the
UBM model as given in equation 8. For the genuine users
the log likelihood from their adapted models will be higher
than the UBM and for impostors the log likelihood of UBM
model will higher.

Λ = log(p(X | λuser))− log(p(X | λubm)) (8)

5.1 Experiment, Results, and Discussion
As mentioned in section 2, in total we record eight walks

(four walks in both sessions) for every user. Features ex-
tracted from the gait cycles of the first two walks of every user
are used for training the UBM-GMM model (mixtures = 256,
r = 20, variance limiting threshold = 0.005). Features from
the gait cycles of next 1 walk of every user is used for adapting
the user specific GMM models. Features from the remaining
1 walk and the 4 walks of the 2nd session are used as test-
ing features for same-day and cross-day performance of the
system. Results of this study in comparison to other studies
are given in table 1.

If we compare the results given in table 1 with previ-
ous studies, we notice that this approach outperforms other
approaches. However, results also indicate a reasonable differ-
ence in same-day and cross-day performance, that supports
the argument that gait varies over the period of time, there-
fore, in our future work we are looking forward to search
and extract features which are more session invariant and
introduce on-line learning methods to cope with gait aging
factor.

6. ACKNOWLEDGMENTS

Table 1: Comparison of results with other studies, s
stands for same, c for cross and m for mixed session.

Study Placement Subjects Settings Best EER

[2] trouser pocket 25 s 100% CCR
[4] trouser pocket 5 s 100% CCR
[1] waist 48 m 20.1
[7] waist 48 s 16.26
[7] waist 48 c 29.39
[6] trouser pocket 35 s 7.051
[6] trouser pocket 35 c 18.965

this study trouser pocket 35 s 3.031
this study trouser pocket 35 m 11.531
this study trouser pocket 35 c 14.393
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