
DAMN - A Debugging and Manipulation Tool for Android
Applications

Gerald Schoiber, MSc.
schoiber@ins.jku.at

Univ.-Prof. Priv.-Doz. DI
Dr. Rene Mayrhofer

mayrhofer@ins.jku.at

Michael Hölzl, MSc.
hoelzl@ins.jku.at

Institute of Networks and Security
Altenbergerstr. 69
Linz, Austria 4040

ABSTRACT
Mobile developers tend to use source code obfuscation to
protect their code against reverse engineering. Unfortu-
nately, some developers rely on the idea that obfuscated
applications also provide additional security. But that is
not the case since mistakes in design are still present and
can be used for arbitrary attacks. However, manually an-
alyzing such obfuscated applications is time consuming for
researchers due to the complexity of the generated code.

Our debugging and manipulation tool (DAMN) offers a
new way of investigating Android applications, including ob-
fuscated ones. It combines static source code reversing with
dynamic manipulation techniques to get rid of obfuscation
penalties and supports the investigator during the analyz-
ing process. DAMN can display the reversed source code,
pause any application at any given time and allows to ma-
nipulate its state. All those features make DAMN a power-
ful reversing and analyzing tool for manual investigations of
obfuscated Android applications.

Keywords
Android, Reverse Engineering, Code Analysis, Debugging

1. INTRODUCTION
Automated analysis tools play an important role when

it comes to application analysis as they can handle huge
amount of applications in short time. This is relevant if we
take a look at the PlayStore where a lot of applications are
available. However, those automated tools are not perfect
and some malicious applications bypass the audit. On the
other hand, manual analysis of each application would not
be sufficient because it is too time consuming and is not
a guarantee to find every malicious behavior. But manual
analysis are important if new concepts of malicious applica-
tions are on the market as they can only be hardly detected
by automated analysis tools. There are many ways of manu-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MoMM ’16, November 28 - 30, 2016, Singapore, Singapore
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4806-5/16/11. . . $15.00

DOI: http://dx.doi.org/10.1145/3007120.3007161

ally investigating applications as for example network traffic
analysis or reverse engineering (Section 4.1). Especially re-
versing applications can help to find possible vulnerabilities
and is therefore heavily used. But this reversing tools do
not or only barely give support for obfuscated code. Obfus-
cation makes it serve to manually analyze code because it
splits packages, classes and even methods in smaller parts
as well as rename them into meaningless names. As source
code obfuscation became pretty standard nowadays, it can
slowdown investigations and make it harder to find possi-
ble weaknesses. In contrast to static analyzing techniques,
dynamic analyzing does not struggle with obfuscated source
code because the applications still have to be executable and
have to behave the same way as none obfuscated ones. Our
debugging and manipulation tool DAMN was build with ob-
fuscation in mind and combines static with dynamic analyze
techniques to support the manual analyzing process. More-
over, it is possible to debug executed applications without
having the source code available. DAMN is also capable of
manipulation on executed applications which supports the
investigator by analyzing the behavior under different con-
ditions. This makes testing against several possible vulner-
abilities easy and fast.

2. RELATED WORK
Because DAMN is an analyzing tool in the very first place,

we took a look at Android analyzing tools. Most of them
are full automated and have no support of manual investi-
gations. The following list is a subset of available tools and
do not have the intend to be complete.

TaintDroid. Enck et al. [6] created TaintDroid which
tracks the flow of privacy sensitive data through applica-
tions in realtime. They label/tag such sensitive data with
a taint. After that, they can trace the data whenever an
application will access it. In such a case, TaintDroid notifies
the user (or other applications) about that. Another study
they published in the paper uncovers that about two-thirds
of thirty popular Android applications leak sensitive data.
Unfortunately TaintDroid have no implementation to block
those unwanted data leaks automatically or manually.

AppFence. Another tool is called AppFence which was
written by Hornyack et al. [8]. It is using TaintDroids taint-
ing approach for its implementation which is also protecting
the user against sensitive data leaks. They provide two ap-
proaches for protection. The first one fakes data if an appli-
cation is requesting sensitive data (e.g. location data). This

solution is also known as shadowing. The second attempt is
to prevent exfiltration of data. Whenever AppFence is de-
tecting a tainted data will be written to a socket, it will drop
the data immediately and either send a fake conformation
or lets the application believe that the device is in airplane
mode.

DroidScope. In differ to the tools above, DroidScope,
which was written by Yan and Yin [18], does not run on
real devices. Instead, it is running on the Android emu-
lator which makes it scalable. The focus rely on malware
detection rather than on manipulation.

DroidTrace. The only implementation which provides for-
ward execution is DroidTrace developed by Zheng et al. [19].
It uses ptrace (process trace [11]) and disassembling tech-
niques for its dynamic analysis. The basic approach is to
disassemble an application into smali-code1, alter and repack
it afterwards. After that, they are able to trigger dynamic
load behaviors on the manipulated applications for its ana-
lyzing purpose.

API Monitor & Aurasium. Xu et al. [17] wrote a tool
named API Monitor & Aurasium. It also uses repacking to
add additional code into the application with the apktool2.
If an violation occurs, the user gets notified and can allow
or deny it.

Mobile-Sandbox. Another automatic test suit solution is
Mobile-Sandbox. It combines static as well as dynamic an-
alyzing techniques for testing. Furthermore, it logs native
API calls [13].

ANANAS. Another automated static and dynamic mal-
ware analysis framework is called ANANAS. It is build to
be expendable and allows to extend functionality by writ-
ing plugins. Those plugins can react to events which are
raised by the framework and execute additional code. Fur-
thermore, logs are stored into a database for filtered reports
afterwards. ANANAS also uses the Android emulator for ex-
ecution which can simulate user interactions over a scripting
language [4].

ANDRUBIS. In contrast to the previous solution, AN-
DRUBIS is using QEMU [1] as its runtime environment [15],
which is a generic open source machine emulator and virtu-
alizer. It is also an automated static and dynamic malware
analysis tool which analyzes the manifest file and the byte
code. In addition, it can analyze network traffic to complete
the investigation. ANDRUBIS analyzed one million appli-
cations from the PlayStore and published the results in this
paper [9].

Google Bouncer. Google also tests applications which are
in the store. Their automated dynamic analyzing tool is
called Google Bouncer and less is known about it because
Google keeps it secret. Jon Oberheide and Charlie Miller
were trying to get some more information and published the
result [10]. If malicious behavior is detected, it will remove
the application from the store. Nichoas Percocos showed at
the Black Hat3 back in 2012 that Bouncer is not a perfect
analysis tool and that it is possible to leverage it [12].

To sum up, the currently available tools are mostly auto-
mated analyzing tools. They are using both, static and dy-
namic analyzing techniques. Because static analyzing can
hardly detect dynamic code execution and struggles with

1https://github.com/JesusFreke/smali
2http://ibotpeaches.github.io/Apktool/
3https://www.blackhat.com/

the completeness of the reversed source code it needs the
dynamic analyzing part to overcome this issue. The down-
side of dynamic analysis is that they are very complex and
therefore it is not always feasible to analyze all possibilities.
Because of that it is necessary to perform additional manual
code analysis.

3. CONCEPT

Idea. DAMN combines static and dynamic analysis meth-
ods to support the investigator during the manual inves-
tigation of Android applications. The static part will re-
verse the application and extract the Java source code (Sec-
tion 4.1). As this source code can be obfuscated we need
another way to overcome the problem with obfuscated re-
versed source code. DAMN uses the dynamic component
to support the investigator finding relevant source code sec-
tions in less time. The application which should be analyzed
can be launched on the Android device as usual. Then the
investigator can navigate through the app and if an inter-
esting part appears on the screen, for example a login, it
can be paused. At this point, DAMN will show the method
which got called. Further calls can also be investigated by
simply single step through the application.

Features. To make the investigation more effortless, DAMN
provides a browser interface for a second screen to show the
source code and to control the app. Further, it is possi-
ble to investigate the parameters and the return values of
the called methods. This helps to understand what the ob-
fuscated method is supposed to do. As an additional in-
formation, the investigator can also inspect field values of
the actual class. To test against different scenarios, DAMN
provides the functionality to change the values of those pa-
rameters, return values and fields directly in the browser.
This can be used to get feedback how the application will
behave on different conditions. This can be used to quickly
check against possible flaws and vulnerabilities.

4. DAMN
DAMN consists of multiple components which are playing

closely together. The main components are explained in
more detail in below.

4.1 Reverse Engineering
One feature of DAMN is to reverse engineer Android ap-

plications. The resulting Java source code is the base of
manual static analyzing [3]. While reverse engineering is
a widespread term for various techniques and decompiling
is only one method of this topic [2], we use reversing as a
synonym for decompiling in this paper.

Android Decompiler. Although Android is based on Java,
there are Android specific decompilers which make use of the
additional information that is stored in the apk file. Jadx4

is such a decompiler and the generated source code is much
more cleaner and more readable as Java specific ones. Unfor-
tunately, DAMN can not directly use a decompiler because
those tools are using native libraries which are not avail-
able for the ARM architecture. To make it more effortless,

4https://github.com/skylot/jadx

DAMN provides a simple BASH script which decompiles an
application on machine which is supported by the decom-
piler and puts the source code back onto the device.

4.2 User Interfaces
We use a second screen to provide the most usable way

of display information and take control over an applica-
tion without interfering the running app on the device. To
achieve this, we are using a client-server pattern. The server
part is running on the Android device and provides web
pages which can be used to gather information and control
the investigated application. Usually, both parties have to
be connected over a WiFi network. But for some system
applications which have been started before there is any
network connection available, DAMN supports connecting
through USB.

DAMN Application. The main application is a simple view
pager that contains lists of installed applications and their
packages. Those packages can be selected separately to help
investigating only a subset instead of all. Packages are sep-
arated by a point and because we do not want to have every
sub package listed, we only show the first three parts of the
packages. If there are more sub packages declared, they will
be selected with the leading package name. After select-
ing one or multiple packages, DAMN write a configuration
file (Section 4.5) with those information into the installation
directory of the application.

Browser Interface. A more complex interface will show up
during the investigation. The second screen solution pro-
vides a comfortable way of displaying information of the
running application without interfering the display of the
device. As browsers are usually available on every device,
we decided to use a web page to display the information. Ad-
ditionally, we can control the application remotely over this
interface. DAMN is using the Civetweb server (section 4.3)
and web sockets for this purpose. The web interface is sep-
arated into two pages. The investigation page is the most
notable page DAMN is displaying. It is segmented in dif-
ferent sections as shown in Figure 1. The Control section
makes it possible to switch between the different runtime
states (Section 4.6). This makes it possible to fully control
the application at any time. In the Source Code section,
DAMN displays the decompiled source code of an appli-
cation if it is available (Section 4.1). The Fields section
shows all declared fields and their values from the current
class of the running application. Section Parameters and
Return Values displaying the current executed method on
call or return. Those sections will not only show the passed,
respectively returned objects and values, it also allows to
manipulate them directly (Section 4.7).

4.3 DAMN Server
To make it possible to display and control an investigated

application at the same time, DAMN uses a customized
Civetweb5 server implementation. This component is writ-
ten in native code and compiled as a standalone executable.
The reason why we wrote it in native code was that it has
to be executed before all Android components are started
which allows to start Java based applications. This com-

5https://github.com/civetweb/civetweb

Figure 1: Investigation Page

ponent is started on boot before other Android components
are loaded [7].

4.4 Xposed Module
One of the core components is the DAMN Xposed module

which we are using to gather information about the running
application as well as to have the possibility to control it.
To understand how it works, we first take a closer look into
Xposed.

Xposed. DAMN is using the Xposed6 framework which is
an open source project that allows to change the behavior
of an application without changing the source code. All
changes are done on memory which makes manipulation
easy. To make this possible, Xposed loads an additional
JAR file at the start of Zygote to run in its context. Zygote
is the first process of all Android applications. Any app will
be a fork of it and therefore have the same basic compo-
nents [5]. Because of the additional JAR file Xposed can
take control over the application.

Xposed provides multiple ways to interact with an appli-
cation. The most remarkable ones are the hooking methods
that can hook chosen methods and provide two interaction
points where a developer can intercept the running applica-
tion:

beforeHookedMethod Hook a method before it actually
gets invoked and allows to take a look into the param-
eters as well as the opportunity to manipulate them.

afterHookedMethod Hook a method after it got invoked
and returned. If the method is not void it is also pos-
sible to look or manipulate the return value before the
actual caller method receives it.

DAMNs Xposed Module. Although Xposed was designed
to make changes in behavior or look and feel of an appli-
cation, it also can be used for investigations. DAMN make
use of the hooking mechanism of Xposed and hook every
constructor as well as all methods in any class. This makes
it possible to take a look at the passed parameters, respec-
tively the returned values. Moreover, we make use of the
manipulation feature to perform changes on the running ap-
plication.

6https://github.com/rovo89

DAMNs Xposed module will be loaded with any new ap-
plication. If the module finds a packages damn (Section 4.5)
file, it checks if there are packages declared and hooks every
constructors and methods in this package. DAMN uses Java
reflection [14] to find all information about a package. The
XDAMNHook class is a customized hook which can send
information to the DAMN server. It also allows to pause,
single step, run or manipulate the application if the XLis-
tener receives data from the web interface.

4.5 Application Configuration File
Because it is possible to select single packages of an appli-

cation we need a mechanism to configure our Xposed module
only interacting with those. Android uses the discretionary
access control (DAC [16]) to restrict the file access of ap-
plications [2]. Because the Xposed module is running as
part of the investigated application it also restricted to its
permissions. Since we can not assume that every applica-
tion have permissions to read any file, we have to put the
configuration file in the installation directory. All files in
this directory can be accessed from any application without
additional permissions. Our Xposed module will check if
the configuration file damn packages exists on startup and
if there are any packages declared in it.

4.6 DAMN Runtime States
DAMN can manipulate the application in a way that it

can be paused, single stepped through the interaction points
or ran as usual. All those changes can be done at runtime.
To single step through the application at the beginning, the
first state after an application gets launched is the pause
state. This makes it possible to analyze the very first actions
an application performs. To perform the runtime manipula-
tion we need interaction points where we can interact with
the application. Xposed provides two different options to
interact with an application at runtime. The first interac-
tion point is raised if a method gets called. If this happens,
Xposed will redirect the call to our Xposed module. The
very same applies if a method returns. On both interaction
points, we can pause the application, investigate the values
of parameters respectively the return value and have the
opportunity to manipulate them.

4.7 Runtime Manipulation
DAMN supports manipulation of values during execution.

It is possible to manipulate values of parameters or return
values at any interaction point. Those values are displayed
as JSON objects at the interaction page and can be overrid-
den. The reason for using JSON is the compact and simple
way of displaying the information. Basically, all Java prim-
itive data types are supported as well as byte arrays. If
an unsupported type gets passed, its class name will be dis-
played. If the manipulated value has not the same data type
as the original, DAMN will raise an exception.

5. EXEMPLARY INVESTIGATION
In order to evaluate the DAMN framework for real world

applications, we investigated two quiz applications. For
comparison reasons we picked one with advanced obfusca-
tion and another without. Both applications will not be
named with their actually name because it is not our inten-
tion to expose anyone in this paper.

Quiz Layout. The investigated quiz applications have basi-
cally the same way of displaying the questions and possible
answers. The question will be displayed on the top of the
activity as well as a counter which indicates the time left
for answering. There are four buttons placed below that are
holding possible answers.

Quiz A. After setting up DAMN for the investigation we
start Quiz A and navigate through the app until we can start
a new game. Right before we start the game, we switch into
single step mode. Now we can see that the browser displays
which method got called and which parameters are passed.
Towards some initial calls we can observe that the questions
are stored in a sqlite7 database. After a short investigation
over the adb shell we can see that the database entries are
encrypted. But we do not need to search for the key which
is either stored or hard coded in the source because we can
directly observe the values from the application right be-
fore they gets displayed. After some more single stepping
through quiz A we find an object which holds one string
with the question and four possible answers which are unen-
crypted. The real interesting part happens if we look at the
method that gets called if we choose an answer. The code
checks if the chosen answer holds the same string as the first
answer in the object we got previously. This means that we
can either change the passed parameter to the method in a
way it is always equal to the first entry or manipulate the
return value to true. Both will lead to a correct answer with-
out pressing the correct one. This manipulation was done
in a few minutes on an application with more than 200.000
classes and much more obfuscated methods.

Quiz B. The second application uses less obfuscation then
quiz A. We switch again to single stepping and start a new
game. This time we can see that the GCM (Google Cloud
Messenger)8 is involved as well as GSON 9 to handle JSON
objects. The main difference between quiz A and B is that
quiz B is requesting each question directly from a server
instead of storing them locally. We can detect the question
as well as four possible answers but no hint which one is the
correct one. The index of the chosen answer and the time it
lasts to choose it is wrapped and send again to the server.
After that, the server replies if the answer was correct or
not. Manipulation of the time also fails as the server checks
if the requested question do not pass a certain time limit.
After further manipulating we came to the conclusion that
it is not possible to manipulate quiz B.

Recap. DAMN made it possible to investigate two obfus-
cated applications in a very short period. The manipulation
features DAMN is offering makes it possible to check quickly
runtime behavior on different parameter values. This makes
it easy to test various scenarios. Although quiz A was using
very strong obfuscation and encryption, it was no problem to
manipulate this application. Quiz B did not use this strong
obfuscation but use another design pattern which protected
it from our attempted attacks.

Despite this was only a short investigation, the outcome
confirms our assumption that obfuscation do not protect ap-

7https://www.sqlite.org/
8https://developers.google.com/cloud-messaging/gcm
9https://github.com/google/gson

plications from being attacked. Of course, it is an additional
protection which makes it harder to read an application, but
dynamic manipulation tools like DAMN are making this pro-
tection obsolete. An appropriate security design is relentless
for any application.

6. FUTURE WORK
During all investigations DAMN was facing multiple prob-

lems that could be solved with additional features. We are
describing some of those features below.

Behavior Rules. One of the first additional feature will be
behavior rules which helps to automate some tasks during
the investigation. For example, those rules could be applied
on specific methods and if a certain case arrives they can
perform manipulation of parameters. This will bring fur-
ther enhancements on testing an application under different
conditions.

Multi Threading. Another useful feature would be the
support of multi threading. DAMN is already supporting
this feature but do not have a proper implementation to
display multiple threads in the browser interface.

DAMN is freely available for non-commercial usage under
the GPLv2 license. It is open source and the project can
be found at github10. Changes in code that will extend or
bring further stability are desirable.

7. CONCLUSION
During the investigation showed that DAMN could find

the relevant code sections quickly. Whereas obfuscation
drastically increased the amount of methods it could not
prevent the performed manipulation attack. Furthermore,
additional protection techniques like the encryption of lo-
cally stored data did not take affect because we can directly
access the data from the application. The manipulation fea-
ture of DAMN helped to check quickly some possible attack
scenarios. DAMN could confirm that security through ob-
scurity is not guaranteed and should not be practiced. Our
tool showed that obfuscation did not add any additional se-
curity protection to an application. The very same can be
derived from native code parts that are used by some ap-
plications to protect information. While DAMN can not
handle native libraries at the moment, other tools can.

8. REFERENCES
[1] F. Bellard. QEMU open source processor emulator.

URL: http://www.qemu.org, 2007.

[2] D. Chell, T. Erasmus, J. Lindsay, S. Colley, and
O. Whitehouse. The Mobile Application Hacker’s
Handbook. Wiley, 2015.

[3] J. J. Drake, Z. Lanier, C. Mulliner, P. O. Fora, S. A.
Ridley, and G. Wicherski. Android Hacker’s Handbook.
Wiley Publishing, 1st edition, 2014.

[4] T. Eder, M. Rodler, D. Vymazal, and M. Zeilinger.
Ananas-a framework for analyzing android
applications. In Availability, Reliability and Security
(ARES), 2013 Eighth International Conference on,
page 711–719. IEEE, 2013.

[5] N. Elenkov. Android Security Internals: An In-Depth
Guide to Android’s Security Architecture. No Starch
Press, 2014.

10https://github.com/baer-devl/DAMN

[6] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G.
Chun, L. P. Cox, J. Jung, P. McDaniel, and A. N.
Sheth. TaintDroid: an information-flow tracking
system for realtime privacy monitoring on
smartphones. ACM Transactions on Computer
Systems (TOCS), 32(2):5, 2014.

[7] A. Hoog. Android Forensics: Investigation, Analysis
and Mobile Security for Google Android. Android
Forensics: Investigation, Analysis, and Mobile
Security for Google Android. Elsevier Science, 2011.

[8] P. Hornyack, S. Han, J. Jung, S. Schechter, and
D. Wetherall. These aren’t the droids you’re looking
for: retrofitting android to protect data from
imperious applications. In Proceedings of the 18th
ACM conference on Computer and communications
security, page 639–652. ACM, 2011.

[9] M. Lindorfer, M. Neugschwandtner, L. Weichselbaum,
Y. Fratantonio, V. van der Veen, and C. Platzer.
ANDRUBIS-1,000,000 Apps Later: A View on
Current Android Malware Behaviors. In Proceedings of
the the 3rd International Workshop on Building
Analysis Datasets and Gathering Experience Returns
for Security (BADGERS), 2014.

[10] J. Oberheide and C. Miller. Smartphone OS Market
Share, 2015 Q2 @ONLINE, 2012.

[11] P. Padala. Playing with ptrace, Part I. Linux Journal,
2002(103):5, 2002.

[12] N. J. Percoco and S. Schulte. Adventures in
bouncerland. Black Hat USA, 2012.

[13] M. Spreitzenbarth, F. Freiling, F. Echtler, T. Schreck,
and J. Hoffmann. Mobile-sandbox: having a deeper
look into android applications. In Proceedings of the
28th Annual ACM Symposium on Applied Computing,
page 1808–1815. ACM, 2013.

[14] C. Ullenboom. Java ist auch eine Insel:
Programmieren mit der Java Standard Edition
Version 6;[das umfassende Handbuch; aktuell zu Java
6; DVD-ROM inkl. Openbook-Bibliothek (4000
Seiten), 300 Aufgaben und Lösungen, Java 6 und
Eclipse 3.2, viele Zusatztools]. Galileo Press, 2006.

[15] L. Weichselbaum, M. Neugschwandtner, M. Lindorfer,
Y. Fratantonio, V. van der Veen, and C. Platzer.
Andrubis: Android malware under the magnifying
glass. Vienna University of Technology, Tech. Rep.
TRISECLAB-0414-001, 2014.

[16] C. Wright, C. Cowan, S. Smalley, J. Morris, and
G. Kroah-Hartman. Linux security modules: General
security support for the linux kernel. In null, page 213.
IEEE, 2003.

[17] R. Xu, H. Säıdi, and R. Anderson. Aurasium:
Practical Policy Enforcement for Android
Applications. In USENIX Security Symposium, page
539–552, 2012.

[18] L.-K. Yan and H. Yin. DroidScope: Seamlessly
Reconstructing the OS and Dalvik Semantic Views for
Dynamic Android Malware Analysis. In USENIX
security symposium, page 569–584, 2012.

[19] M. Zheng, M. Sun, and J. Lui. DroidTrace: A ptrace
based Android dynamic analysis system with forward
execution capability. In Wireless Communications and
Mobile Computing Conference (IWCMC), 2014
International, page 128–133. IEEE, 2014.

