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ABSTRACT
Dynamic hand gestures have become increasingly popular
as an input modality for interactive systems. There exists
a variety of arm-worn devices for the recognition of hand
gestures, which differ not only in their capabilities, but also
in the arm positions where they are worn. The aim of this
paper is to investigate the effect of placement of such devices
on the accuracy for recognizing dynamic hand gestures (e.g.
waving the hand). This is relevant as different devices re-
quire different positions and thus differ in the achievable
recognition accuracy. We have chosen two positions on the
forearm: on the wrist and right below the elbow. These po-
sitions are interesing as smartwatches are usually worn on
the wrist and devices using EMG sensors for the detection
of static hand gestures (e.g. spreading the fingers) have to
be worn right below the elbow.

We used an LG G Watch worn on the wrist and a Myo
armband from Thalmic Labs worn below the elbow. Both
are equipped with three-axis accelerometers, which we used
for gesture recognition. Our hypothesis was that the wrist-
worn device would have a better recognition accuracy, as
dynamic hand gestures have a bigger action radius on the
wrist and therefore lead to bigger acceleration values. We
conducted a comparative study with nine participants that
performed eight simple, dynamic gestures on both devices.
We tested the 4320 gesture samples with different classifiers
and feature sets. Although the recognition results for the
wrist-worn device were higher, the difference was not signif-
icant due to the substantial variation across participants.
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1. INTRODUCTION
Hand gestures are becoming increasingly popular as an

input modality e.g. in cars or for home entertainment sys-
tems. However, most gesture recognition systems rely on
cameras, which can be affected by poor lighting conditions
or by obstructions that limit the range in which gestures
can be used [1, 8]. These problems can be circumvented by
reading gesture information directly from arm-worn devices.

One example of such a device is Thalmic Labs’ Myo arm-
band1. Compared to wrist-worn devices like activity track-
ers or smartwatches, it not only allows to detect dynamic
gestures with its inertial measurement unit, but also static
gestures (poses) with the hand [11] by using electromyogra-
phy sensors, which read electrical signals from the muscles
in the forearm to detect hand poses. This offers a wide
range of gesture inputs to interactive systems, without the
limitations of camera-based technologies.

One constraint, however, is the placement of the device. In
order to read muscle signals properly from the forearm, the
Myo device has to be wrapped around the forearm just below
the elbow. While this placement is a necessity for detecting
hand poses, we expect it to have a negative effect on the
detection of dynamic hand gestures. Because of the lower
action radius, accelerations get lower the closer the sensing
device is worn to the rotary joint (elbow). Investigating the
effect of placing an arm-worn device such as the Myo right
below the elbow is relevant for interactive systems which use
both static and dynamic gestures for their input.

Summing up, we expect the recognition accuracy of a de-
vice worn right below the elbow to be significantly lower than
that of a wrist-worn device. The main contribution of this
work is to test this hypothesis by comparing the Myo arm-
band with a state-of-the-art smartwatch, the LG G Watch2.
We limited our work to three-axial acceleration data, gyro-
scope and compass were not used for gesture recognition.

We used a set of eight simple gestures that have already
been used in previous research (e.g. [5], [7] and [9]). The
eight different gestures, which are shown in Figure 1, are
waving left, waving right, waving up, waving down, drawing

1https://www.myo.com/
2http://www.lg.com/us/smart-watches/lg-W100-lg-watch



a square, drawing a triangle, and drawing a circle clockwise
and counterclockwise with the right hand in the air.

2. RELATED WORK

2.1 Gesture Recognition Using Arm-Worn De-
vices

Much previous research on gesture recognition used ac-
celerometers. Often devices were used which are held in the
hand. Examples are the papers of Wu et al. [15], where the
Nintendo Wii controller with its built-in accelerometer was
used to distinguish 12 gestures, or the paper of Hwang et
al. [6], where an Android smartphone was used as a gesture
input device. However, in contrast to our work, the devices
were held in the hand and not worn on the wrist or on the
forearm of the user, like we do in our approach.

In other related work, wrist-worn devices were used for
gesture recognition. However, to the best of our knowl-
edge, none of them compared different accelerometer po-
sitions on the user’s forearm. For example, Rekimoto [14]
used a gesture detection unit which was mounted on the
user’s wrist and recognized hand gestures by capacitively
measuring wrist-shape changes and forearm movements.

A gesture recognition system that used a smartwatch and
its built-in accelerometer sensor to assist people with visual
impairments was proposed by Porzi et al. [13]. In the work
of Chen et al. [2], gestures with a smartwatch were used to
enhance a wide range of interactive tasks on a smartphone.

In our work, we recognize gestures both with a smartwatch
and a device strapped to the arm below the elbow joint si-
multaneously, in order to investigate which placement leads
to a higher gesture recognition accuracy.

2.2 Placement of Accelerometers for Gesture
Recognition

The placement of accelerometers was subject of research
mainly in the field of activity recognition so far. Cleland
et al. [3] conducted a study about the optimal placement of
accelerometers for the detection of everyday activities like
walking, sitting, lying, standing, and walking up and down
stairs. They found that the hip was the best single location
to record and classify the data, and that the simultaneous
use of two sensors instead of one increased the accuracy.

The activity recognition accuracy for different accelerom-
eter locations was also investigated by Olguin and Pent-
land [12]. They tested eight different common activities like
walking, performing hand movements or sitting, using wire-
less accelerometers placed on the wrist, the left hip and the
chest. The best recognition results were achieved with the
simultaneous use of all three sensors. In both projects, the
wrist was the only considered sensing location on the arm.

Another study on the accelerometer placement for fall de-
tection as well as the recognition of postures that may be
the result of a fall was done by Gjoreski et al. [4]. They
tested nine placements of up to four sensors. The arm was
not considered for a sensor placement in this work.

The related projects mentioned above examine the place-
ment of accelerometers in the context of activity recognition.
The sensors were placed all over the body and not on differ-
ent positions on the arm, which is the scope of our work. To
the best of our knowledge, there has been no research about
the optimal sensor placements on the forearm for gesture
recognition based on acceleration data.

3. IMPLEMENTATION DETAILS
We prototypically implemented an Android-based system

for recognizing the gestures shown in Figure 1. The whole
process can be split up into four steps, which will be de-
scribed in more detail below: sensor data collection, prepro-
cessing, feature extraction and feature normalization.

For the sensor data collection, a smartwatch (LG G Watch)
and a gesture armband (Thalmic Labs’ Myo armband) were
chosen. For preprocessing, feature extraction and normal-
ization, R3 was chosen due to its comprehensive data anal-
ysis features. We used the Weka machine learning library4

for the experimental part of this work because of the high
number of implemented classifiers and feature filters.

3.1 Sensor Data Collection
To record the gestures with the Myo armband and the

LG G Watch, an Android application was developed which
runs on smartphones with Android version 4.3 or higher. To
collect the acceleration data from the two supported input
devices, a Bluetooth connection to the smartphone and its
application is required. Using the Myo SDK, the connec-
tion to the Myo armband is established using Bluetooth 4.0
and the accelerometer data from the Myo is delivered via a
callback method in the smartphone application.

For the Android Wear smartwatch, a dedicated applica-
tion was implemented, which receives a start/stop command
for data recording from the smartphone. The collected data
is then sent to the mobile phone application via the estab-
lished Bluetooth connection. The acceleration data from
both devices is collected in a data strcucture until the ges-
ture is finished, whereupon the raw acceleration data for all
three axes and from both devices is stored in two csv-files on
the smartphone’s internal storage. The Myo armband deliv-
ers its data with a fixed sampling frequency of 50Hz, the
sampling frequency of the Android Wear smartwatch was
set to 50Hz in the application, but it can slightly vary due
to the Android-internal sensor implementation.

3.2 Preprocessing
The preprocessing of this data includes two steps to smooth

the acceleration data and to normalize the length of all ges-
tures for a device. As smoothing function, a running me-
dian of odd span (the runmed method in R) was used with
a width of 11 samples per window (corresponds to 220 ms).

For the gesture length normalization, the maximum length
of all recorded gestures of a device was chosen to avoid loss
of information for single gestures. The acceleration samples
of each gesture were then interpolated, which resulted in 300
samples (6 seconds) for the Myo and to 421 samples (8.42
seconds) for the LG G Watch data using R’s approx method.

3.3 Feature Extraction and Selection
Based on several existing works on gesture recognition

with a three-axis accelerometers [5, 10, 16], a set of proven
features was chosen. We selected a relevant subset with the
CfsSubsetEvaluation and BestFirst algorithm using cross-
validation with 10 folds as provided by the Weka Explorer.
The basic features are calculated from a window that con-
tains all accelerometer data belonging to one single gesture.

Due to the interpolation of the raw acceleration data, the

3https://www.r-project.org/
4http://www.cs.waikato.ac.nz/ml/weka/



Table 1: Set of features that were used for the classification. All features marked with a belong to the subset
selected for the Myo armband, and those marked with b belong to the subset selected for the Android Wear
smartwatch.

No. Feature Description
1 Mean Magnitude The mean over all magnitudes.
2a Minimum Magnitude The lowest of all magnitudes.
3 Maximum Magnitude The highest of all magnitudes.

4 − 6a,b Range The acceleration value range for each axis.
7 − 9a Mean The mean value of the acceleration values for each axis.

10 − 12b Mean Absolute Deviation The mean over all absolute deviations for each axis.
13 − 15a Root Mean Square The mean over all squared accelerometer values for each axis.

16 − 18b Variance The variance of the accelerometer values for each axis.
19 Mean Variance The mean over the accelerometer value variances.
20a Magnitude Variance The variance of the magnitude values.

21-23 Standard Deviation The standard deviation of the accelerometer values for each axis.
24 Mean Standard Deviation The mean over the accelerometer value standard deviations.
25 Magnitude Standard Deviation The standard deviation of the magnitude values.

26 − 28a,b Peaks The number of times an accelerometer values is higher than the mean for each axis.
29 Magnitude Peaks The number of times a magnitude is higher than the Mean Magnitude value.
30a Mean Peaks The mean over the accelerometer value peaks for each axis.

31 − 33a Mean Peak Values The mean over all peaks values for each axis.

34 − 36a,b Correlation Coefficients The correlation coefficient between two axes.
37-39 Energy The energy of the accelerometer values for each axis.

40 − 42b Frequency Range The frequency range for each axis.

43 − 45a,b Mean Frequency The mean over the frequency values for each axis.

46 − 48a,b Frequency Peaks The number times a frequency value is higher than the Mean Frequency for each axis.

49a,b Mean Frequency Peaks The mean over the frequency peaks for each axis.

50a,b Gesture Duration The number of accelerometer data values for a gesture.

51 − ..a,b Accelerometer Data Every 50th raw acceleration value that was additionally normalized and centred.
The exact number of acceleration values depends on the length of the original gesture.

window size is fixed to 300 samples for the Myo armband and
421 samples for the LG G Watch. The feature set shown in
table 1 with more than 50 features was chosen as the basis
for the feature extraction and the subsequent selection step.

3.4 Feature Normalization
In order to get better results and more accurate recogni-

tion accuracies especially for the k-Nearest Neighbour clas-
sifier (which is impacted by data that is not normalized),
the whole feature set calculated during the feature extrac-
tion was additionally centered and scaled to the mean of the
data being 0 and the standard deviation being 1.

4. EXPERIMENT

4.1 Participants
We conducted a comparative study with nine voluntary

participants (2 female, 7 male). Their ages varied from 22 to
55 years (mean=31; SD=11.71) and all of them were right-
handed. None was familiar with gesture recognition or with
the eight gestures. Six of the participants were IT-students
or programmers, three participants had no IT-background.

4.2 Apparatus
As gesture recording devices, the latest version of Thalmic

Lab’s Myo armband was used and as Android Wear smart-
watch a LG G Watch W100 with Android Wear version 5.1.1
was chosen. For the Android smartphone application, An-
droid Studio 1.4 was used as development environment. A
Google Nexus 5x smartphone with Android version 6.0 was
used as gesture recording device. For the preprocessing, fea-

ture extraction and normalization, R version 3.2.3 was used,
for the experiment evaluation Weka version 3.6.13 was used.

4.3 Procedure
The participants were asked to perform the eight simple,

dynamic gestures shown in figure ?? with both devices si-
multaneously for data collection. The recorded accelerom-
eter data was first filtered and interpolated. Afterwards,
the basic feature set shown in table 1 was calculated and
normalized and then used for the evaluation.

At the beginning of each session, the gestures and how
they should be performed was explained to each participant.
For the data collection, the participants were equipped with
the Myo armband and the LG G Watch on the right arm,
and they were told which gesture to perform next and when
to start. As starting position, the outstretched arm, being
held orthogonal to the body and parallel to the floor, was de-
fined. Starting from this position, each gesture was trained
and performed 30 times by each of the nine participants as
shown in Figure 1. This resulted in a total of 2160 gesture
samples from each device.

4.4 Design
In order to test our hypothesis that the wrist-worn device

(LG G Watch) has a better recognition accuracy that the
one worn below the elbow (Myo armband), we evaluated the
recognition accuracies using 4 different classifiers: k-Nearest
Neighbour, J48 decision tree, Random Forest and Bagging.
First, we evaluated the recognition accuracies with all fea-
tures using 10-fold cross-validation with 10 repetitions. Sec-
ond, we conducted a leave-one-subject-out cross-validation
in which a single participant is repeatedly (for each partic-
ipant) left out from the training data and used for testing



(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1: Visualization of how each gesture was performed by the participants: Waving (a) left, (b) right,
(c) up and (d) down, as well as drawing (e) a square, (f) a triangle, (g) a circle clockwise and (h) a circle
counterclockwise.

only, as the results are more generalizable. Moreover, we
conducted the training for all features as well as for the se-
lected features highlighted in table 1.

5. RESULTS AND DISCUSSION
The evaluation and classification of gestures was done with

the Weka machine learning software on a PC. The bar chart
Figure 2 shows the recognition accuracies for each device,
classifier, feature set and evaluation type; the error bars
represent the standard deviations. The results for 10-fold
cross-validation with 10 repetitions are, as expected, better
than for the leave-one-subject-out cross-validation, and that
the deviation of the results is much lower.

The Myo armband achieves between 92.1% and 98.2%
mean recognition accuracy for the different classifiers and
therefore performs slightly better than the LG G Watch,
which achieves between 86.5% and 96.2% with the 10-fold
cross-validation and all features. Considering only the se-
lected features (Tab. 1) changes the mean recognition accu-
racies by just ±1%. This is a good result for using just one
third (for the Myo armband) respectively one half (for the
LG G Watch) of the original feature set consisting of more
than 68 features for the Myo armband and 77 features for
the Android Wear smartwatch.

For the selected features subset, we tested the statistical
significance for the best 10-fold cross-validation result for
each device, being Random Forest for the Myo and kNN with
k=1 for the smartwatch. The mean accuracy for the Myo
was 97.6%, which was slightly more than the mean accuracy
of 96.5% observed for the LG G Watch. The difference was
statistically significant (t99 = 15.5, p < 0.001).

The results for the leave-one-subject-out cross-validation
case with all features show that the LG G Watch performs
better than the Myo armband with every classifier (90.7%
for the LG G Watch compared to 80.7% for the Myo arm-
band classified with Random Forest). Considering only the
selected features increases the mean recognition accuracies
of the Myo armband by up to ∼5%, whereas for the LG G
Watch there is a maximum increase of ∼2%.

For the selected features subset, we tested the statistical
significance for the best leave-one-subject-out cross-validation
result for each device, being kNN with k=1 for the Myo arm-
band and Random Forest for the LG G Watch. The mean
accuracy for the Myo armband was 83.2%, which was more
than 8% lower than the mean accuracy of 91,5% observed for
the LG G Watch. However, as there were substantial varia-
tion across participants, the difference was not statistically
significant (t8 = -1.3, ns).

For this reason, we have to reject our hypothesis. For
both the 10-fold cross-validation and the leave-one-subject-
out cross-validation, the recognition accuracies for the wrist-
worn device (LG G Watch) were not significantly better than
for the arm-worn device (Myo armband).

Finally, Figure 3 visualizes the confusion matrices for the
leave-one-subject-out cross-validation with only the selected
features and the best classifiers (kNN with k=1 for the Myo
armband and Random Forest for the LG G Watch). For
the Myo armband, it can be seen that the waving left ges-
ture was often confused with the waving right gesture and
the circle clockwise with the circle counterclockwise gesture,
whereas the square and triangle gestures were recognized al-
most without any error. With the LG G Watch, these four
gestures were recognized and differentiated better.
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Figure 2: The recognition accuracies for the Myo armband and for the LG G Watch for each classifier and
for all features as well as for the selected features. The evaluation was done with (a) 10-fold cross-validation
with 10 repetitions and (b) with leave-one-subject-out cross-validation.
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Figure 3: The confusion matrices with leave-one-subject-out cross-validation for (a) the Myo armband and
(b) the LG G Watch, each using the best classifier (kNN for the Myo and Random Forest for the LG G
Watch) with the selected features only.



6. CONCLUSIONS
In this work we compared the placement of two wear-

able devices, an LG G Watch worn on the wrist and a Myo
armband from Thalmic Labs worn right below the elbow,
concerning the recognition of dynamic hand gestures. We
implemented an Android-based system for simultaneously
collecting sensor data from both devices. In a study with
nine participants, we collected 2160 gesture samples from
each device. The data was filtered and normalized, features
were extracted, relevant features were selected and normal-
ized, and they were classified using k-Nearest Neighbour,
J48 decision tree, Random Forest and Bagging classifiers.
We evaluated the recognition accuracy with 10-fold cross-
validation with 10 repetitions and with leave-one-subject-
out cross-validation.

Our assumption was that the wrist-worn device would
have a significantly better recognition accuracy due to its
bigger action radius. Using the set of selected features only
and an evaluation with leave-one-subject-out cross-validation,
whose results are more generalizable than those for the 10-
fold cross-validation, the recognition accuracy for the LG G
Watch was more than 8% higher than for the Myo armband.
Although this supports our hypothesis we had to reject it,
as the difference was not signification due to the substantial
variation across participants.

A possible cause for the non-significance is the used set of
fairly simple gestures. Moreover, the gestures were charac-
terized by large hand movements, which is why the acceler-
ation values measured below the elbow were still big enough
to distinguish the gestures well. Therefore, an interesting
item of future work would be the investigation of recogni-
tion accuracies with a larger number of gestures and with
more complex gestures. This would include less sweeping
gestures as well as gestures with rotations of the forearm.
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