Picky: Efficient and Reproducible Sharing of Large
Datasets using Merkle-Trees

Daniel Hintze
FHDW University of Applied Sciences
Fiirstenallee 3 - 5
33102 Paderborn, Germany
Email: daniel.hintze @thdw.de

Abstract—There is growing demand for researchers to share
datasets in order to allow others to reproduce results or in-
vestigate new questions. The most common option is to simply
deposit the data online in its entirety. However, this mechanism
of distribution becomes impractical as the size of the dataset
increases or if the dataset is frequently changing as new data is
collected. In this paper we describe PICKY, a new Merkle tree
based system for sharing large datasets which allows users to
download selected portions and to receive incremental updates.
We demonstrate the viability of our approach by quantifying its
benefit when applied to a number of large datasets used in the
networking and measurement community.

I. INTRODUCTION

The design and performance of computer systems and
networks is commonly evaluated based on public datasets
of significant size. In general most scientific domains, e. g.
genetics [1], neuroscience [2], plant science [3] and computer
science [4] deal with increasing amounts of data from experi-
ments and simulations today. Since research is largely publicly
funded, it has been argued that researchers have an ethical
duty to share scientific data in order to maximize the scientific
contribution and facilitate a broad use of data [5]. Moreover,
funding bodies increasingly require data sharing to be an
integral part of research projects [6]. Sharing data not only
reduces the costs of science [7] and facilitates further research,
it is also crucial for validating approaches and repeating results
in order to improve reproducibility [8]-[10].

Sharing and accessing datasets the size of several terabytes
up to petabytes, however, requires significant computational
resources and is thus challenging from a practical point of view,
even if researchers are only interested in a small fraction of
the data. Researchers lacking an adequate institutional infras-
tructure or relevant technical skills frequently find it hard to
access such datasets [11]. Efficient sharing techniques therefore
facilitate access to scientific data for less-well equipped or
funded researchers, making the ability to conduct excellent
research less of a privilege of economic wealth.

When facing the question of how to make a digital dataset
of substantial size available to other researchers, there are four
different approaches to consider: Datasets can be shared offline
by physically transferring storage media [12], which is slow
and expensive. Sharing datasets directly through HTTP or FTP
downloads is more common today, hosting data on either an

Andrew Rice
Computer Laboratory
University of Cambridge
15 JJ Thomson Ave., Cambridge, CB3 OFD, UK
Email: acr31@cam.ac.uk

institutional website or in a data repository. Downloading huge
datasets, however, is cumbersome and error prone. Peer-to-peer
approaches like BitTorrent have been proposed as alternatives
[13], [14], but inflict a loss of control on the dataset owner.
Finally, cloud processing reverses the process by bringing code
to the data and thus is advisable for very large datasets, but
processing is more costly and complex compared to other
options [15], [16]. In this paper we present the design and
evaluation of PICKY, a simple yet powerful approach for
repeatable and efficient sharing of large evolving scientific
datasets. The contributions of this paper are as follows:

e We describe a novel data organisation model that fa-
cilitates repeatable, verifiable and efficient sharing of
large datasets, featuring incremental updates and selective
downloads.

« We show that our approach is beneficial by applying it to
three large datasets from different domains and calculating
the benefits for a selection of network measurement
studies in the literature. We find that PICKY would have
saved researchers between 26% and 93% of network and
storage costs.

II. RELATED WORK

Early examples of processing systems that allow certain
queries in multi-dimensional datasets are the Active Data
Repository [17] and DataCutter [18], a middleware infras-
tructure for processing datasets stored in archival storage
systems across a wide-area network. Co-Sites [19] is an online
resource management system to facilitate collaboration among
geographically distributed research sites. Scibox [20] is a cloud-
based infrastructure that features data reduction functions to
subset a dataset or perform computations within the cloud
rather than locally, but does not feature intra-file subsetting.
Another example for cloud-based processing are cloud-based
heterogeneous computing frameworks [21], designed specif-
ically for multimedia mining applications, as well as Sector
and Sphere [22], storage and compute clouds that allow user-
defined functions within and across data centres. PreDatA [23]
is a middleware for preparing and characterizing data whilst
being produced on a peta-byte scale. Somewhat related to our
logical data model is the Logical Information Systems as a
File System [24], that enables dynamic information queries on

intra-file level. We distinguish PICK Y from distributed version
control systems (such as Git) by its ability to distribute slices
(along many dimensions) of a dataset whilst maintaining useful
functionality such as versioning and distributing updates.

III. LogicaAL DATA MODEL

Since scholars in many cases are only interested in particular
aspects of a larger dataset, enabling them to select and down-
load only certain subsets saves resources and enables access
to datasets otherwise too large to process using commodity
hardware.

To enable selectivity, contextual knowledge about the content
and structure of the dataset is required. Real world scientific
datasets mostly come in form of some file structure. While files
contain the actual content of a dataset, directory structures and
file names are commonly used to encode metadata describing
the content, allowing for selectivity on file level. Files usually
either constitute atomic binary data, for instance images, or can
be considered collections of self-contained entries. Examples
are network trace files containing sequences of independent
network packets [25] and event logs consisting of events
capturing, e. g. mobile device usage [4]. Selectivity at the entry
level is desirable, if only a subset of entries is relevant for a
particular research question, for instance only network traffic
to a single UDP port [26] or certain usage events [27].

In order to enable selecting subsets of a dataset not only on
file level but also on entry level in a generic way, a model for
associating metadata with files and entries is necessary. We
expect these metadata to come in form of key-value attributes,
defined and provided by the dataset publisher based on which
dataset consumers are then able select which subset, i.e. which
files containing which entries, they wish to download.

IV. PHYSICAL DATA MODEL
A. Indexing

To prepare a dataset for publication, a repository and an
index file are created based on the original dataset by applying
the following steps:

1) File Processing: Each file of the dataset is associated
with a number of dataset-specific attributes in key-value form
that allow users of the dataset to assess the content of the file.
In addition, the file’s relative path, filename and timestamp are
recorded in order to restore these attributes on client side.

2) Entry Extraction: Subsequently, each file is split into
one or multiple atomic entries, depending on the file’s content.
Entries can be of equal size, separated by a line break or
defined by a binary format (e.g. network packets). Since our
system therefore can not know how to define entries, the
content of the file is streamed through a function implemented
by the dataset owner to provide associated attributes each time
one entry passes the data stream.

3) Chunk Persistence: Entries are grouped by their set of
attributes into collection of entries called chunks. In addition
to the entry data itself each chunk also contains the length
of the data stored and a sequence id identifying the relative
positioning of the entry within the source file. The content

of a chunk is compressed and written to disk when either
the entire file is processed or the size of the compressed
entries exceeds a threshold C,, .., in which case an additional
chunk for subsequent entries with the same attribute set is
created. The file format used to persist chunks starts with a
protocol version to allow future changes, followed by a string
naming the applied compression algorithm and the length of
the uncompressed content. Finally, the compressed entries are
written to the file, as depicted in Figure 1.

sequence id entry length

© file entry i
© dataset file entry 1 .. fileentryn JB
reference

Fig. 1. Physical Data Model

4) Repository Storage: Chunks are stored in a repository,
which is a form of content addressable storage system (CAS).
A repository is basically a file structure, in which blobs, such
as chunks, are stored using a content hash. This approach
ensures deduplication to save storage and bandwidth while
also allowing us to verify the integrity of the repository.

5) Dataset Index Structure: All chunks featuring the same
set of attributes constitute a block. A block contains the asso-
ciated attributes followed by a list of chunk hashes. If a client
requests a particular attribute then the blocks containing that
attribute are used to identify the chunks to send to the client.
For each file within the dataset, a file reference containing
metadata like name, relative path, timestamp, dataset specific
attributes, binary file header and the blocks constituting the
file is added to the index. All file references together form a
dataset index, which also contains optional metadata describing
the dataset, for instances a short description, an URL pointing
to further reading and an icon image. The dataset index is
compressed and stored as a single file in the repository, again
using the hashed content as an identifier. The physical data
model hence implements a Merkle tree.

To retrieve a dataset index file from the repository, its id,
e.g. its hash, is required. To translate from human readable
labels to repository ids, references are created. References are

stored alongside the repository and point to a dataset index
file, being basically a substitution for symlinks, which are
not available on every operating system. Figure 1 outlines the
general picture of reference, dataset index and chunks.

B. Patches, Upgrades and Versioning

Existing sharing mechanisms offer limited to no support
for applying patches and upgrades to published datasets in
an efficient way, i.e. without requiring users to download the
entire dataset again. There is usually no versioning scheme
and so independently reproducing results is hard.

In P1CKY, these properties are achieved by maintaining a
single repository for different versions of the same or even
multiple datasets. When a new version of a dataset is to
be published, the indexing procedure is carried out again,
reusing the existing repository. Unchanged chunks in the
dataset produce identical content hashes as during previous
indexing, and are stored only once due to the underlying CAS
principle. Upgrades, i.e., appending new data to existing files
or new files to the dataset, result in new chunks being stored in
the repository. Patches, i.e., changing already published files,
only affects the corresponding chunks and not entire files. For
example, changing a single entry of an arbitrary large file at
most requires clients to download one chunk of size Cj,q.
rather than the entire file. Entries are deleted by updating their
length to zero.

Since the dataset index structure implements a Merkle tree,
each distinct version of the dataset results in a new index file.
Dataset owners would typically create references to each index
file following some version naming scheme, e. g., using current
date or incrementing a number. Since multiple references can
point to the same index file, maintaining a head reference to
the current version is possible. By using the hash to identify
a particular index version, users are guaranteed to retrieve an
exact copy of the specified version of a dataset, even if it has
been altered meanwhile. Hence, this strong versioning scheme
facilitates reproducibility of results for datasets under change.

C. Client Access

In order to allow clients to access the dataset, the repository
containing the dataset index needs to be made available through
an arbitrary file transfer protocol like HTTP. An obvious choice
is using an off-the-shelf web server such as Nginx or Apache
to deliver the repository as static content. However, filesystem,
ftp and ssh access are also available.

A client-side application forms the counterpart of the server-
side dataset indexing and enables the selective downloading
and subsequent reconstruction of the dataset. Given a dataset
reference, the client resolves the reference and obtains the
dataset index file, which contains all information required to
select subsets of the dataset down to file entry level.

D. Example

In this section we illustrate our data model by applying it
to a simple sample dataset. It should be noted that in large
real-world datasets, the number of files, blocks, chunks and

entries is multiple orders of magnitude higher (see Table I).
The sample dataset contains three small network trace files in
pcap format, each containing a pcap header and a number of
TCP and/or UDP packets, as outlined in Figure 2.

[pcap header]

[pcap header] [pcap header]

1 TCP (80) [data] 1 TCP (80) [data] 1 UDP (25) [datal
2 TCP (22) [data] 2 TCP (80) [datal 2 TCP (22) [data]
3 UDP (53) [data] 3 TCP (25) [datal 3 TCP (80) [data]
4 TCP (22) [data] 4 TCP (80) [data] 4 TCP (80) [data]
5 UDP (53) [data] 5 TCP (80) [datal 5 TCP (22) [data]

Fig. 2. Example dataset containing three network trace files

To create the repository and prepare the dataset for sharing,
each file is parsed using an entry parser (usually provided
by the dataset publisher). The entry parser yields the pcap
header, file attributes (such as the last modified date) and most
importantly the number of entries (in this case packets).

Each entry is associated with a number of attributes, namely
the protocol family as well as the destination port. Entries
are prefixed with their relative position within the source file.
Entries are grouped by their attributes so that for each unique
combination of attributes in the source file there exists at least
one chunk file. When the size of a chunk file exceeds Cqz,
subsequent entries are written to a new chunk file with the
same attribute set. In our example, we assume the attribute set
[TCP, Port 80] in Trace_2.pcap exceeds Cpqz. AS
a result, the sample dataset is expanded into 9 chunk files as
outlined in Figure 3, each stored using the hash of its contents
as a reference.

2a78d Oe6da 84de3

GZIP
[content length]
1 [length] TCP (80) [data]

GZIP

[content length]

1 [length] TCP (80) [data]
2 [length] TCP (80) [data]
4 [length] TCP (80) [data]

GZIP
[content length]
1 [length] UDP (25) [data]

a2163 7e6bf 83afa

GZIP

[content length]

2 [length] TCP (22) [data]
4 [length] TCP (22) [datal

GZIP
[content length]
5 [length] TCP (80) [data]

GZIP

[content length]

2 [length] TCP (22) [data]
5 [length] TCP (22) [data]

29e16 26a0f] 6a45e

GZIP

[content length]

3 [length] UDP (53) [data]
5 [length] UDP (53) [data]

GZIP
[content length]
3 [length] TCP (25) [data]

GZIP

[content length]

3 [length] TCP (80) [data]
4 [length] TCP (80) [data]

Fig. 3. Example dataset chunks

After parsing the entire dataset and creating the chunk files,
the dataset structure is written to a single index file. The
index file contains a logical file entry for each source file
in the dataset and metadata such as the description of the
dataset. Each logical file entry contains the pcap header of the
respective source file, the filename, last modified timestamp
and any other user-defined metadata. These are followed by
a number of blocks, each representing a unique combination

of entry attributes. Blocks in turn are basically an ordered
collection of chunk references (hashes of chunk files), as
outlined in Figure 4. Once the index file is assembled, the
indexing process is complete and the repository is ready for
publishing.

A client intending to access the dataset first downloads
the index file to learn the structure of the dataset. Based on
this information, the client is capable of identifying which
chunks are required to reassemble the dataset so that all entries
featuring a chosen set of attributes are present. For the sake
of this example, we assume the client is only interested in
TCP traffic to port 22 (SSH). Using the index information,
the client establishes that two blocks in two files contain the
desired attributes. Knowing which blocks to restore, the client
identifies all chunk references within these blocks and proceeds
to download them. See Figure 5 for an outline of the relevant
chunks.

Trace_1.pcap; [last modified]

[pcap header]

length (comp./uncomp.) Entries: 1 2a78d
length (comp./uncomp.) Entries: 1 a2163
length (comp./uncomp.) Entries: 1 29e16

Trace_2.pcap; [last modified]
[pcap header]

length (comp./uncomp.) Entries: 3

length (comp./uncomp.) Entries: 1

length (comp./uncomp.) Entries: 1

Trace_3.pcap; [last modified]

[pcap header]

length (comp./uncomp.) Entries: 1

length (comp./uncomp.) Entries: 2

length (comp./uncomp.) Entries: 1

Fig. 4. Example dataset index file

Once all the required chunks have been downloaded, the
subset of the original dataset is reconstructed, and valid pcap
files are created. Each selected file is created using information

2a78d Oe6da 84de3

(a2163 | 7e6bf 83afa |

GZIP GZIP

[content length] [content length]

2 [length] TCP (22) [data] 2 [length] TCP (22) [data]
4 [length] TCP (22) [data] 5 [length] TCP (22) [data]

29e16 26a0f 6a45e

Fig. 5. Chunks containing TCP traffic to port 22

present in the file entry data structure, including the original
binary file header. Subsequently, entries read from the chunks
are sequentially written to the destination files, using the
relative sequence id to preserve the original entry order when
reading from several different block’s chunks at once. Once
all chunks have been processed, the dataset subset containing
only TCP traffic to port 22 as outlined in Figure 6 is ready
for further usage.

Trace_2.pcap]

[pcap header]
2 TCP (22) [datal
4 TCP (22) [data]

[pcap header]
2 TCP (22) [datal]
5 TCP (22) [data]

Fig. 6. Subset of the original dataset containing only TCP traffic to port 22

V. IMPLEMENTATION

We implemented this process in Java. The implementation
consists of the following two parts:

A. Indexer

During index creation, a given dataset directory is traversed.
Each file is run as a byte stream through a parsing interface,
allowing dataset providers to apply their own definition of
entries, to assign attributes for files and entries and a file header
if needed. For common file formats like pcap network traces,
however, we supply default implementations. The indexing
process runs in parallel, being primary CPU-bound due to the
amount of decompressing, hashing and compressing.

B. Client

Since one of our goals was to simplify access to datasets of
substantial size for research with a less technical background,
we aimed to develop a download client that is robust, powerful
and easy to use.

After downloading the single index file, the client generates
a generic user interfaces that enables to define a subset of

the original dataset based on the attributes on both file and
entry level. Since number and diversity of attributes can be

arbitrarily high, a powerful selection interfaces is desirable.

Inspired by SQL WHERE clauses, we allow users to enter
JavaScript statements as filter rules which are evaluated per file
with its associated attributes being available in the executing
context. This allows not only for sophisticated selection rules
but also, for instance, drawing a random file subset using
functions like Math.random(), as shown in Figure 7.

{2 File Selection (1 of 10}

Filter days = 5 && Math.random() = 0.9 v)
Context apiversion : [String] days : [Integer] device : [String]
first_day : [String] last_day : [String] locale : [String]

locale_country : [String] manufacturer : [String] path : [String]

rooted : [Boolean]

(a) File level subset selection

|=| Entry Selection (Matching files: 631 of 631)

¥ |—| Transport layer
TCP
V| upp
v Internet layer

lempV4 (CommaonPacket)
lcmpV4 (DestinationUnreachable)
lempV4d (EchoReply)

lcmpVd (EchoRequest)

(b) Entry level subset selection

v @ Changes

Download Chunks (188 of 237)
. ‘

Downloading 8161d7184bfd64aec0f2289cc3f189dc7610 79%
Install Files (4 of 10)

1 L)
Installing file fhome/dhintze/dataset/target/a04aad5031084f.csv 40%

Apply Changes

(c) Progress feedback

Fig. 7. Download client user interface

After specifying a subset of the dataset, the client compares
the desired subset to the situation of the target directory and
calculates any changes required in order to make the target
directory match the subset. Possible changes are deleting files
and directories not present in the subset, creating missing

directories, installing new files and updating present files.

Required chunks not already present in the local cache are
queued for downloading.

Subsequently, the calculated changes are applied to the
target directory. Most importantly, this includes downloading
required chunks, verifying their integrity against the content
hash, decompressing them and reassembling them to files. For

this purpose, file headers are retrieved from the dataset index
structure if present. Subsequently, the content of each file is
reconstructed entry for entry based on selected blocks. Each
block consists of one or more chunks, which are lazily read
into memory while they are sequentially consumed. Sequence
ids stored with each entry determine the order in which entries
from different blocks are weaved together, ensuring correct
reconstruction of the original file.

VI. EVALUATION

Selectivity is a key feature of PICK Y but this property is not
found in current download-oriented dataset sharing approaches.
We now demonstrate the value of selective downloading of
larger datasets from the scientific community and the benefit
in terms of bandwidth and storage savings. We do this by
measuring the benefits of our proposed system for three real-
world datasets of substantial size from different domains. For
network and cluster traces, we analyse how previous studies in
the literature would have benefited from selectivity. For mobile
device usage logs, we analysed download logs from a custom
download client featuring basic selectivity support, allowing
us to derive accurate selection statistics.

A. Network Traces

The CAIDA Anonymized Internet Traces 2014 contains
anonymized passive traffic traces from two high-speed Internet
backbone links recorded in pcap format, split into one-minute
blocks, and compressed using gzip, totalling 631 files with
a compressed size of 531.0GB (1092.4 GB uncompressed).
Besides, the dataset also contains a plain text file with
statistical information as well as a file providing timestamps
with nanosecond precision (since pcap requires microsecond
precision) for each of the trace files. For simplicity, we only
used the network traces but not the corresponding metadata
and timestamps for the evaluation.

During index creation, traces were split into packets using
libpcap. Each single packet was considered an entry and
associated with available protocol information by assigning
attributes denoting the respective network (e.g., IPv4, IPv6,
ICMPv4) and transport layer protocol (e.g., TCP, UDP) as well
as destination port number. We note that far more elaborate
approaches would be possible here. All this would require is
the implementation of an appropriate entry parser.

The segmentation resulted in 307 737 blocks with a total
of 19.8x10° entries (packets). Index creation took 52 hours,
mainly due to constantly crossing the boundary between code
running on the JVM and native code by making calls to libpcap.
Using a pure Java pcap parser would greatly increase indexing
speed, but at the time of writing, no decent implementation was
available to us. Applying a chunk size threshold C),,,,, = 5 MB,
the resulting index contained a total number of 402 215 chunks
with a total size of 477.4GB and an index description file
of 23.7MB. Interestingly enough, this represents a 9.98%
decrease in size when comparing the compressed original
dataset and the compressed index. Keeping in mind that we
store an additional 221.4 GB (uncompressed) of meta data

by assigning a unique 64-bit sequence number and as well
as a 32-bit integer holding the entry length to each of the
19.8 x10? packets to allow for correct ordering of entries during
reassembly. The reduction in storage space can be explained
by gzip compression performing better on files with similar
content (or, more precisely, a higher redundancy within 32K
blocks). Since we are effectively grouping network packets by
protocols, similarity increases, for instance through repeating
header fields.

At the network protocol level, 99.66% of the stored data are
IPv4 traffic while only 0.1% is IPv6 traffic. The fraction of IPv6
traffic is lower than what is reported in other studies, where
IPv6 is found to be, for instance, 0.64% [28] of the traffic
in 2014. However, our numbers are close to corresponding
statistics by CAIDA!. Also, it was found that IPv6 adoption
at the edges of the network is significantly less than in the
network core [29]. 0.23% of the dataset consists of ICMPv4
traffic and only 0.006% of ICMPv6 packets.

On transport protocol level, we distinguished TCP and UDP
traffic. We found 73.2% of the dataset contains TCP packets
while UDP made up 11.4%. This leaves 15,4% of the dataset
classified as OTHER. Again, this fraction could have been
classified by putting more effort into parsing.

The third level of packet classification is based on TCP and
UDP ports. While not guaranteeing correct results, ports are
often used as an efficient way of deriving application protocol
information from network traces—deep packet inspection
not even possible unless application data has been collected
[30]. For simplicity, we only considered well-known (0-1023)
destination ports though more a fine grain classification would
be possible. The most commonly occurring ports are 80
(HTTP) with a fraction of 15.6%, 443 (HTTPS) with 8.2%
and 53 (DNS) with 0.5% of the dataset. Figure 8 outlines the
resulting dataset fragmentation (not showing traffic to ports
higher than 1023 as well as HTTP and HTTPS traffic).

Size

25 (SMTP) 19
(Character

Generator) 110 (Post i

53 (DNS)

123 (NTP)

22 (SSH)

Fig. 8. Caida dataset fragmentation by destination port (excluding http/https
and traffic to ports higher than 1023)

Uhttps://www.caida.org/data/passive/trace_stats/

P1cKY allows us to form subsets of the original dataset
based on arbitrary filtering criteria from the three level of entry
classification. For instance, a client interested in IPv6 traffic to
UDP port 161 (SNMP) would only be required to download
34.5kB instead of downloading the entire 531.0 GB network
trace dataset. Even when including the index file, this still
means a reduction in network traffic and client-side storage
requirements by 99.996%. To determine realistic improvements
for scientific applications, we analysed a number of published
studies using large network trace datasets that based their
research on only a part of the trace. For comparability, we
assume the CAIDA dataset was used, even if the studies were
based on an other version of the dataset or a different network
trace dataset of significant size.

When it comes to downloading only subsets, a number
of studies [31]-[33] can be found that analyse only traffic
for a particular transport protocol, e. g. TCP. Using the corre-
sponding subset would saved 182.5 GB or 34.37% of network
traffic and client-side storage compared to the full dataset.
Interestingly, some authors noted that they “did not have
enough processing capacity to filter all CAIDA traces” [33],
highlighting the point that computational resource limitations
do affect the scientific community, motivating resource efficient
sharing techniques. The potential benefits for researchers only
interested in UDP traffic [34], [35] are even greater, since UDP
traces account for only 10.24% of the dataset. Subsets based on
application protocols derived from well-known port numbers
are also applicable to real-world studies. One study analysed
the CAIDA dataset for packets related to web and mail traffic
[30], which is a subset 21.43% the size of the full dataset. We
are, however, not able to construct a subset including peer-
to-peer traffic comparable to what is used in [30], since the
underlying protocols are not bound to well-known ports. In
another the authors propose a method to generate realistic
cover traffic for HTTPS, SMTP, and SSH [36]. By applying
port-level selection, the relevant subset is only 7.5% the size
of the original dataset.

B. Mobile Device Usage Logs

We also evaluated the proposed approach on the basis of the
Device Analyzer Dataset.”> Containing usage data from 30 393
Android devices collected over the course of 4 years by now,
it is the largest publicly available dataset of this kind as of
today [4]. Data are continuously collected and new versions
of the dataset are published periodically, demanding both
versioning and upgradability. For each participating device,
the dataset contains a sequential log file of 263 key/value pairs
along timestamps, recorded either periodically or event-based
(see Figure 9). At the time of evaluation, the dataset features
an uncompressed size of 11531.7 GB and a compressed size
of 1610.93 GB respectively. For index generation, a virtual
machine running Ubuntu Linux with 8 cores (2.27 GHz) and
16 GB main memory was used. Dataset files were read from

Zhttp://deviceanalyzer.cl.cam.ac.uk

and resulting repository files written to a NFS network storage
mount.

For index creation, one entry was created for each of the
153.0x10° log events within the dataset and assigned the asso-
ciated key as an attribute. On file level, device metadata were
assigned as attributes. On average, 46.8 blocks were created
per device. Choosing a chunk size threshold C),,, = 5MB
resulted in 1.5 million chunks with a total size of 2.4 TB being
created, constituting an increase of 26.31% in size. This is in
part due to less efficient compression of the smaller chunk files.
However, meta information on entry level, namely sequence id
and entry length also increase chunk size by additional 12 bytes
per entry. Given the number of entries, these metadata add
up to an uncompressed size of 1.7 TB (an overhead of 14%).
Overall, indexing the entire dataset took around 45 hours.

size

) applrecent contacts
image|dates

app|shareddirty

power|battery SN

app|pss

wifilscan
M

app|stime

app|name

EETT

Fig. 9. Device Analyzer dataset fragmentation by event type

One rare example of selective dataset sharing is the custom
download client used to make the Device Analyzer dataset
available on occasion of the UbiComp/ISWC 2014 Program-
ming Competition. The client recorded selection metrics, which
we applied to our indexed version of the dataset in order to
assess which proportion of the total dataset was requested
for download. Of the 43 users accessing the dataset for the
competition, 20 selected subsets of the dataset for download,
making a total of 108 different selections. On file level (i.e
device level), users limited the selected subset on average to
31.3% (median 25.37%) of the full dataset (see Figure 10a).
Only taking entry level into account, selections limited the
processed dataset to 39.4% on average with a median of
22.7% of the full dataset (see Figure 10b). Combining both file
level and entry level selection results in an average selection
of 23.65% of the dataset (see Figure 10c). This number is
distorted by one client selecting almost the entire dataset, which
is reflected by a median combined selection size of only 8.6%.
Interestingly, 8 out of the 43 limited their selection to less then
1% of the original dataset size.

~
(4]
'

Selected Subset (%)
n
(4]

0

100 -
- “‘|||||||||||||||||||||||||||||
o _.||II
10 20 30 40

Client
(a) File level selection

~100-
75-
50-
0- ,_llllll
10 20 30

Selected Subset (%

0

40
Client
(b) Entry level selection

100 -
0- ,,_-IIII
10 20 30

Client
(c) File and entry selection

~
o
'

40

Selected Subset (%)
a
o

Fig. 10. Subset size under different selection level

C. Google Cluster Usage Traces

As a final example we show the performance of PICKY on
a dataset of datacentre activity. Studying usage traces of real-
world systems play an extensive role in understanding design
challenges and evaluating novel algorithms and approaches.
The first publicly available trace dataset from a multi-purpose
cluster of significant size is the Google cluster trace dataset.?
It contains anonymized traces for a month of activity in a
single 12K machine cluster and provides information such
as resource consumption, scheduling information, execution
metrics, and constraints. Sensitive data like application or
user names are obfuscated. The dataset consists of 2002 gzip
compressed csv files with a total size of 44.1 GB (185.6 GB
uncompressed), made available via Google Cloud Storage.
Details about the content and semantics of the cluster traces
can be found in [37].

For index creation, files were first grouped into 6 categories,
distinguishing files containing job events, machine attributes,
machine events, task constraints, task events, and task usage.
Files were split line-wise into entries. The dataset contains only
few discrete features suitable for entry-level tagging, hence
tagging could only be applied to distinguish between task event

3https://github.com/google/cluster-data

Original Format

Picky Format

Dataset Files Format Size Compressed Index Blocks Chunks Entries Compressed ~ Overhead

CAIDA 2014 631 libpcap 1092.4GB 531.0GB 23.7MB 307737 402215 19.8x10° 477.4GB -9.98%

Cluster Traces 2002 csv 185.6 GB 44.1GB 1.4MB 16722 25714 1.4x10° tab51.1 GB 15.87%

Device Analyzer 30393 key/value 11531.7GB 1610.93GB 118.8MB 1.7x10% 2.1x10% 153.0x10° 2034.8GB 26.31%
TABLE I

COMPARING INDEX CHARACTERISTICS AND OVERHEAD FOR DIFFERENT DATASETS

type and job event type, as well as task execution constraint
types. Processing was performed on a physical Ubuntu Linux
server equipped with an Intel i7-3770 3.40GHz CPU and 16
GB main memory. A local SATA hard drive was used for
persistent storage. With a chunk size threshold C,,,,, = 5 MB,
index creation took 5.5 hours, splitting 2002 csv files line wise
into 1.4x10° entries, forming 16 722 blocks broken down to
25714 chunks. The final index description file requires 1.4 MB
of space while the entire index is 51.1 GB in size, resulting
in an overhead of 15.87% compared to the original dataset
format, again due to less efficient compression and 15.97 GB
(8.6%) of additional metadata.

Since the dataset contains only few discrete features suitable
for entry-level attribute association, the utility of entry-level
subset selection is limited to applications in which only certain
cluster event types are relevant such as the prediction of
machine REMOVE events [38] (See Figure 11).

size

EVICT (2) EQUAL

FAIL (3) ©

SUBMIT (0)

KILL (5)

SCHEDULE (1)

Fig. 11. Google Cluster Usage Traces fragmentation by event type

VII. CONCLUSION

In this paper, we presented PICK Y, a novel approach for
repeatable and efficient sharing of large evolving scientific
datasets. PICKY features a number of properties that, de-
pending on the nature of the dataset, are desirable. It allows
dataset providers to publish updates without having clients
to re-download content already present. Likewise, publishers
are able to patch published data, for instance to correct errors.
Consistency of the downloaded dataset can be verified to ensure

correctness of received data. PICKY features versioning,
which facilitates reproducibility of results by obtaining an exact
copy despite any number of updates or patches. It also enables
common access control schemes by working over arbitrary file
exchange protocols. The most important feature, however, is
the capability to download and process only a subset of the
original dataset by enabling both file and intra-file selectivity.

We implemented PICKY and evaluated the concept by
applying it to three different scientific datasets. We showed that
our approach works well for datasets with an uncompressed
size of 11531.7 GB and handles 153.0x10° entries and more.
Given a corresponding parsing function, PICKY handles text
based files and arbitrary binary protocols equally well. Though
our approach introduces 12 bytes of metadata per entry,
we noted that for some datasets, we actually accomplish a
reduction in size through the inherent compression-friendly
file reorganisation.

We showed that there is value in selective downloading of
scientific datasets by analysing both access statistics from the
provider of a large dataset as well as previous studies analysing
such datasets. We found that 40% of the users that specified a
subset narrowed their choice down to less then 1% the size of
the original dataset, resulting in significant reduction in traffic
related cost, much faster access as well as lower computational
resource requirements on client side. From looking at how
network trace datasets are used in literature, we found that
users who are working with a subset could save 26.8% to
92.5% of the size of the original dataset in both network traffic
and local storage.

PICKY is released* under the Apache License, Version 2.0
and used successfully to provide the Device Analyzer dataset,
now containing traces of more than 30 576 mobile devices, to
interested researches.

ACKNOWLEDGMENT

The authors gratefully acknowledge funding by the German
Federal Ministry of Education and Research.

“https://github.com/ucam-cl-dtg/picky

[1]

[2

—

[3]

[4

=

[5]

[6

=

[7

[8

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19

REFERENCES

L. Clarke, X. Zheng-Bradley, R. Smith, E. Kulesha, C. Xiao, I. Toneva,
B. Vaughan, D. Preuss, R. Leinonen, M. Shumway, S. Sherry, and
P. Flicek, “The 1000 Genomes Project: data management and community
access,” Nature Methods, vol. 9, no. 5, pp. 459-462, 2012.

A. R. Ferguson, J. L. Nielson, M. H. Cragin, A. E. Bandrowski, and
M. E. Martone, “Big data from small data: data-sharing in the long tail’
of neuroscience,” Nature Neuroscience, vol. 17, no. 11, pp. 1442-1447,
2014.

C. Ma, H. H. Zhang, and X. Wang, “Machine learning for Big Data
analytics in plants.” Trends in plant science, vol. 19, no. 12, pp.
798-808, 2014.

D. T. Wagner, A. Rice, and A. R. Beresford, “Device Analyzer: Large-
scale mobile data collection,” in Big Data Analytics workshop, ACM
Sigmetrics 2013, 2013.

B. Brakewood and R. A. Poldrack, “The ethics of secondary data
analysis: Considering the application of Belmont principles to the
sharing of neuroimaging data,” Trends in plant science, vol. 19, no. 12,
pp. 671-676, 2013.

National Institutes of Health, “Final NIH Statement on Sharing Research
Data.”

R. Poldrack and K. Gorgolewski, “Making big data open: Data sharing
in neuroimaging,” Nature Neuroscience, vol. 17, no. 11, pp. 1510-1517,
12014.

S. Fomel and J. F. Claerbout, “Reproducible Research,” Computing in
Science & Engineering, vol. 11, pp. 5-7, 2009.

Yale Law School Roundtable on Data and Code Sharing, “Reproducible
Research: Addressing the Need for Data and Code Sharing in
Computational Science,” Computing in Science & Engineering, vol. 12,
pp. 8-12, 2010.

R. J. LeVeque, I. M. Mitchell, and V. Stodden, “Reproducible Research
for Scientific Computing: Tools and Strategies for Changing the Culture,’
Computing in Science and Engineering, pp. 13—17, 2012.

M. V. Shapovalov, A. a. Canutescu, and R. L. Dunbrack, “BioDown-
loader: Bioinformatics downloads and updates in a few clicks,” Bioin-
formatics, vol. 23, no. 11, pp. 1437-1439, 2007.

M. R. Meiss, F. Menczer, S. Fortunato, A. Flammini, and A. Vespignani,
“Ranking web sites with real user traffic,” Proceedings of the
international conference on Web search and web data mining - WSDM
"08, p. 65, 2008.

J. P. Cohen and H. Z. Lo, “Academic Torrents : A Community-
Maintained Distributed Repository,” in Proceedings of the 2014 Annual
Conference on Extreme Science and Engineering Discovery Environment,
2014.

M. G. I. Langille and J. A. Eisen, “Biotorrents: A file sharing service
for scientific data,” PLoS ONE, vol. 5, no. 4, pp. 1-5, 2010.

A. P. Heath, M. Greenway, R. Powell, J. Spring, R. Suarez, D. Hanley,
C. Bandlamudi, M. E. McNerney, K. P. White, and R. L. Grossman,
“Bionimbus: a cloud for managing, analyzing and sharing large genomics
datasets.” Journal of the American Medical Informatics Association, pp.
1-7, 2014.

R. L. Grossman, Y. Gu, J. Mambretti, M. Sabala, A. Szalay, and
K. White, “An overview of the Open Science Data Cloud,” Proceedings
of the 19th ACM International Symposium on High Performance
Distributed Computing - HPDC ’10, pp. 377-384, 2010.

C. Chang, T. M. Kurc, A. Sussman, and J. H. Saltz, “Optimizing Retrieval
and Processing of Multi-dimensional Scientific Datasets,” 14th Interna-
tional Parallel and Distributed Processing Symposium (IPDPS’00), pp.
405463, 2000.

M. Beynon, R. Ferreira, T. Kurc, A. Sussman, and J. Saltz, “DataCutter:
Middleware for filtering very large scientific datasets on archival storage
systems,” NASA conference publication, vol. 9619020, pp. 119-134,
2000.

Y. Zhang, M. Wolf, K. Schwan, S. Klasky, Q. Liu, and G. Eisenhauer,
“Co-Sites: The Autonomous Distributed Dataflows in Collaborative
Scientific Discovery,” in SC15 The International Conference for High
Performance Computing, Networking, Storage and Analysis, 2015.

5

[20]

[21]

(22]

[23]

[24]
[25]
[26]

[27]

(28]

[29]

[30]

[31]

(32]

[33]

(34]

[35]

[36]

[37]

(38]

J. Huang, X. Zhang, G. Eisenhauer, K. Schwan, M. Wolf, S. Ethier,
and S. Klasky, “Scibox: Online sharing of scientific data via the cloud,”
Proceedings of the International Parallel and Distributed Processing
Symposium, IPDPS, pp. 145-154, 2014.

H. Wang, B. Xiao, L. Wang, F. Zhu, Y.-G. Jiang, and J. Wu, “CHCEF:
A Cloud-Based Heterogeneous Computing Framework for Large-Scale
Image Retrieval,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 25, no. 12, pp. 1900-1913, 2015.

Y. Gu and R. L. Grossman, “Sector and Sphere: the design and
implementation of a high-performance data cloud.” Philosophical
transactions. Series A, Mathematical, physical, and engineering
sciences, vol. 367, no. 1897, pp. 2429-2445, 2009.

F. Zheng, H. Abbasi, C. Docan, J. Lofstead, Q. Liu, S. Klasky,
M. Parashar, N. Podhorszki, K. Schwan, and M. Wolf, “PreDatA -
Preparatory data analytics on peta-scale machines,” Proceedings of
the 2010 IEEE International Symposium on Parallel and Distributed
Processing, IPDPS 2010, 2010.

Y. Padioleau, B. Sigonneau, and O. Ridoux, “Lisfs: A logical
information system as a file system,” pp. 803—-806, 2006.
“The CAIDA UCSD Anonymized Internet Traces
http://www.caida.org/data/passive/passive_2014_dataset.xml.
A. Herzberg and H. Shulman, “Vulnerable delegation of DNS resolution,”
Lecture Notes in Computer Science, vol. 8134 LNCS, pp. 219-236, 2013.
D. Hintze, R. D. Findling, S. Scholz, and R. Mayrhofer, “Mobile
device usage characteristics: The effect of context and form factor on
locked and unlocked usage,” in Proceedings of the 12th International
Conference on Advances in Mobile Computing and Multimedia, ser.
MoMM ’14. New York, NY, USA: ACM, 2014, pp. 105-114.

J. Czyz, M. Allman, J. Zhang, S. Iekel-Johnson, E. Osterweil, and
M. Bailey, “Measuring ipv6 adoption,” in Proceedings of the 2014
ACM Conference on SIGCOMM, ser. SIGCOMM ’14. New York, NY,
USA: ACM, 2014, pp. 87-98.

A. Dhamdhere, M. Luckie, B. Huffaker, k. claffy, A. Elmokashfi, and
E. Aben, “Measuring the deployment of ipv6: Topology, routing and
performance,” pp. 537-550, 2012.

M. Dusi, F. Gringoli, and L. Salgarelli, “Quantifying the accuracy
of the ground truth associated with Internet traffic traces,” Computer
Networks, vol. 55, no. 5, pp. 1158-1167, 2011.

H. Jiang and C. Dovrolis, “Why is the internet traffic bursty in short
time scales?” ACM SIGMETRICS Performance Evaluation Review,
vol. 33, no. 1, p. 241, 2005.

H. Ding and M. Rabinovich, “TCP Stretch Acknowledgements and
Timestamps: Findings and Implications for Passive RTT Measurement,”
ACM SIGCOMM Computer Communication Review, vol. 45, no. 3, pp.
20-27, 2015.

N. Ekiz and P. D. Amer, “Transport layer reneging,” Computer
Communications, vol. 52, pp. 82-88, 2014.

C. Lee, D. K. Lee, and S. Moon, “Unmasking the growing udp
traffic in a campus network,” in Proceedings of the 13th International
Conference on Passive and Active Measurement, ser. PAM’12. Berlin,
Heidelberg: Springer-Verlag, 2012, pp. 1-10.

M. Zhang, M. Dusi, W. John, and C. Chen, “Analysis of UDP Traffic
Usage on Internet Backbone Links,” 2009 Ninth Annual International
Symposium on Applications and the Internet, pp. 280-281, 2009.

N. Schear and N. Borisov, “Preventing SSL Traffic Analysis with
Realistic Cover Traffic,” 16th ACM Conference on Computer and
Communications Security, 2009.

C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. a. Kozuch,
“Heterogeneity and dynamicity of clouds at scale,” Proceedings of the
Third ACM Symposium on Cloud Computing - SoCC 12, pp. 1-13,
2012.

A. Sirbu and O. Babaoglu, “Towards data-driven autonomics in data
centers,” in IEEE International Conference on Cloud and Autonomic
Computing, 2015, pp. 45-56.

2014,”

